2,074 research outputs found

    Radio sources in the Chandra Galactic Bulge Survey

    Get PDF
    We discuss radio sources in the Chandra Galactic Bulge Survey region. By cross-matching the X-ray sources in this field with the NRAO VLA Sky Survey archival data, we find 12 candidate matches. We present a classification scheme for radio/X-ray matches in surveys taken in or near the Galactic plane, taking into account other multiwavelength data. We show that none of the matches found here is likely to be due to coronal activity from normal stars because the radio to X-ray flux ratios are systematically too high. We show that one of the source could be a radio pulsar, and that one could be a planetary nebula, but that the bulk of the sources are likely to be background active galactic nuclei (AGN), with many confirmed through a variety of approaches. Several of the AGN are bright enough in the near-infrared (and presumably in the optical) to use as probes of the interstellar medium in the inner Galaxy

    The Relationship Between X-ray Luminosity and Duty Cycle for Dwarf Novae and their Specific Frequency in the Inner Galaxy

    Get PDF
    We measure the duty cycles for an existing sample of well observed, nearby dwarf novae using data from AAVSO, and present a quantitative empirical relation between the duty cycle of dwarf novae outbursts and the X-ray luminosity of the system in quiescence. We have found that log⁥DC=0.63(±0.21)×(log⁥LX(erg s−1)−31.3)−0.95(±0.1)\log DC=0.63(\pm0.21)\times(\log L_{X}({\rm erg\,s^{-1}})-31.3)-0.95(\pm0.1), where DC stands for duty cycle. We note that there is intrinsic scatter in this relation greater than what is expected from purely statistical errors. Using the dwarf nova X-ray luminosity functions from \citet{Pretorius12} and \citet{Byckling10}, we compare this relation to the number of dwarf novae in the Galactic Bulge Survey which were identified through optical outbursts during an 8-day long monitoring campaign. We find a specific frequency of X-ray bright (LX>1031 erg s−1L_{X}>10^{31}\,{\rm erg\,s^{-1}}) Cataclysmic Variables undergoing Dwarf Novae outbursts in the direction of the Galactic Bulge of 6.6±4.7×10−5 M⊙−16.6\pm4.7\times10^{-5}\,M_{\odot}^{-1}. Such a specific frequency would give a Solar neighborhood space density of long period CVs of ρ=5.6±3.9×10−6 \rho=5.6\pm3.9\times10^{-6}\,pc−3^{-3}. We advocate the use of specific frequency in future work, given that projects like LSST will detect DNe well outside the distance range over which ρ≈const\rho\approx{\textrm const}.Comment: 9 pagers, 4 figures Accepted for publication in MNRA

    Discovery of a high state AM CVn binary in the Galactic Bulge Survey

    Get PDF
    We report on the discovery of a hydrogen-deficient compact binary (CXOGBS J175107.6-294037) belonging to the AM CVn class in the Galactic Bulge Survey. Deep archival X-ray observations constrain the X-ray positional uncertainty of the source to 0.57 arcsec, and allow us to uniquely identify the optical and UV counterpart. Optical spectroscopic observations reveal the presence of broad, shallow He i absorption lines while no sign of hydrogen is present, consistent with a high state system. We present the optical lightcurve from Optical Gravitational Lensing Experiment monitoring, spanning 15 years. It shows no evidence for outbursts; variability is present at the 0.2 mag level on timescales ranging from hours to weeks. A modulation on a timescale of years is also observed. A Lomb-Scargle analysis of the optical lightcurves shows two significant periodicities at 22.90 and 23.22 min. Although the physical interpretation is uncertain, such timescales are in line with expectations for the orbital and superhump periods. We estimate the distance to the source to be between 0.5 - 1.1 kpc. Spectroscopic follow-up observations are required to establish the orbital period, and to determine whether this source can serve as a verification binary for the eLISA gravitational wave mission.Comment: Accepted for publication in MNRAS Letter

    Variability of Optical Counterparts in the Chandra Galactic Bulge Survey

    Get PDF
    We present optical lightcurves of variable stars consistent with the positions of X-ray sources identified with the Chandra X-ray Observatory for the Chandra Galactic Bulge Survey. Using data from the Mosaic-II instrument on the Blanco 4m Telescope at CTIO, we gathered time-resolved photometric data on timescales from ∌2\sim2 hr to 8 days over the 34\frac{3}{4} of the X-ray survey containing sources from the initial GBS catalog. Among the lightcurve morphologies we identify are flickering in interacting binaries, eclipsing sources, dwarf nova outbursts, ellipsoidal variations, long period variables, spotted stars, and flare stars. 87%87\% of X-ray sources have at least one potential optical counterpart. 24%24\% of these candidate counterparts are detectably variable; a much greater fraction than expected for randomly selected field stars, which suggests that most of these variables are real counterparts. We discuss individual sources of interest, provide variability information on candidate counterparts, and discuss the characteristics of the variable population.Comment: Accepted for publication in the Astrophysical Journal Supplement

    The Multifragmentation Freeze--Out Volume in Heavy Ion Collisions

    Full text link
    The reduced velocity correlation function for fragments from the reaction Fe + Au at 100 A~MeV bombarding energy is investigated using the dynamical--statistical approach QMD+SMM and compared to experimental data to extract the Freeze--Out volume assuming simultaneous multifragmentation.Comment: 8 pages; 3 uuencoded figures available with figures command, LateX, UCRL-J-1157

    Systematics of Fission Barriers in Superheavy Elements

    Get PDF
    We investigate the systematics of fission barriers in superheavy elements in the range Z = 108-120 and N = 166-182. Results from two self-consistent models for nuclear structure, the relativistic mean-field (RMF) model as well as the non-relativistic Skyrme-Hartree-Fock approach are compared and discussed. We restrict ourselves to axially symmetric shapes, which provides an upper bound on static fission barriers. We benchmark the predictive power of the models examining the barriers and fission isomers of selected heavy actinide nuclei for which data are available. For both actinides and superheavy nuclei, the RMF model systematically predicts lower barriers than most Skyrme interactions. In particular the fission isomers are predicted too low by the RMF, which casts some doubt on recent predictions about superdeformed ground states of some superheavy nuclei. For the superheavy nuclei under investigation, fission barriers drop to small values around Z = 110, N = 180 and increase again for heavier systems. For most of the forces, there is no fission isomer for superheavy nuclei, as superdeformed states are in most cases found to be unstable with respect to octupole distortions.Comment: 17 pages REVTEX, 12 embedded eps figures. corrected abstrac

    The Chandra Galactic Bulge Survey: optical catalogue and point-source counterparts to X-ray sources

    Get PDF
    As part of the Chandra Galactic Bulge Survey (GBS), we present a catalogue of optical sources in the GBS footprint. This consists of two regions centered at Galactic latitude b = 1.5 degrees above and below the Galactic Centre, spanning (l x b) = (6x1) degrees. The catalogue consists of 2 or more epochs of observations for each line of sight in r', i' and H{\alpha} filters. It is complete down to r' = 20.2 and i' = 19.2 mag; the mean 5{\sigma} depth is r' = 22.5 and i' = 21.1 mag. The mean root-mean-square residuals of the astrometric solutions is 0.04 arcsec. We cross-correlate this optical catalogue with the 1640 unique X-ray sources detected in Chandra observations of the GBS area, and find candidate optical counterparts to 1480 X-ray sources. We use a false alarm probability analysis to estimate the contamination by interlopers, and expect ~ 10 per cent of optical counterparts to be chance alignments. To determine the most likely counterpart for each X-ray source, we compute the likelihood ratio for all optical sources within the 4{\sigma} X-ray error circle. This analysis yields 1480 potential counterparts (~ 90 per cent of the sample). 584 counterparts have saturated photometry (r'<17, i'<16), indicating these objects are likely foreground sources and the real counterparts. 171 candidate counterparts are detected only in the i'-band. These sources are good qLMXB and CV candidates as they are X-ray bright and likely located in the Bulge.Comment: 18 pages, 18 figures. Published in MNRAS. 2016MNRAS.458.4530

    Spectroscopic classification of X-ray sources in the Galactic Bulge Survey

    Get PDF
    We present the classification of 26 optical counterparts to X-ray sources discovered in the Galactic Bulge Survey. We use (time-resolved) photometric and spectroscopic observations to classify the X-ray sources based on their multi-wavelength properties. We find a variety of source classes, spanning different phases of stellar/binary evolution. We classify CX21 as a quiescent cataclysmic variable (CV) below the period gap, and CX118 as a high accretion rate (nova-like) CV. CXB12 displays excess UV emission, and could contain a compact object with a giant star companion, making it a candidate symbiotic binary or quiescent low mass X-ray binary (although other scenarios cannot be ruled out). CXB34 is a magnetic CV (polar) that shows photometric evidence for a change in accretion state. The magnetic classification is based on the detection of X-ray pulsations with a period of 81 ±\pm 2 min. CXB42 is identified as a young stellar object, namely a weak-lined T Tauri star exhibiting (to date unexplained) UX Ori-like photometric variability. The optical spectrum of CXB43 contains two (resolved) unidentified double-peaked emission lines. No known scenario, such as an AGN or symbiotic binary, can easily explain its characteristics. We additionally classify 20 objects as likely active stars based on optical spectroscopy, their X-ray to optical flux ratios and photometric variability. In 4 cases we identify the sources as binary stars.Comment: Accepted for publication in MNRA

    Measurement of bronchial hyperreactivity : comparison of three Nordic dosimetric methods

    Get PDF
    Clinical testing of bronchial hyperreactivity (BHR) provides valuable information in asthma diagnostics. Nevertheless, the test results depend to a great extent on the testing procedure: test substance, apparatus and protocol. In Nordic countries, three protocols predominate in the testing field: Per Malmberg, Nieminen and Sovijarvi methods. However, knowledge of their equivalence is limited. We aimed to find equivalent provocative doses (PD) to obtain similar bronchoconstrictive responses for the three protocols. We recruited 31 patients with suspected asthma and health care workers and performed BHR testing with methacholine according to Malmberg and Nieminen methods, and with histamine according to Sovijarvi. We obtained the individual response-dose slopes for each method and predicted equivalent PD values. Applying a mixed-model, we found significant differences in the mean (standard error of mean) response-dose (forced expiratory volume in one second (FEV1)%/mg): Sovijarvi 7.2 (1.5), Nieminen 13.8 (4.2) and Malmberg 26 (7.3). We found that the earlier reported cut-point values for moderate BHR and marked BHR between the Sovijarvi (PD15) and Nieminen (PD20) methods were similar, but with the Malmberg method a significant bronchoconstrictive reaction was measured with lower PD20 values. We obtained a relationship between slope values and PD (mg) between different methods, useful in epidemiological research and clinical practice.Peer reviewe
    • 

    corecore