912 research outputs found
Animal Performance, Storage Losses and Feasibility of Ensiling a Mixture of Tub Ground Low Quality Hay and Wet Distillers’ Grains for Growing Cattle
This study was designed to evaluate long term storage options for wet distillers’ grains including storage losses and performance of backgrounding calves. Thirty six tons of wet distillers’ grains were mixed by mixer wagon with 9 tons of tub ground fescue hay in August of 2007. This mixture packed and stored in a bunker silo, covered with plastic and stored until December at the ISU Beef Nutrition Farm. The mixture was fed to growing cattle and compared to the same feeds mixed daily, and also conventional feeds for a 112 day trial. Performance of all treatments exceeded projections, averaging approximately 3 pounds per day. There were no differences in daily gain or feed conversion among treatments, although cattle fed WDG consumed less feed. Sulfur content of the WDG containing diets exceeded .5% of the diet dry matter. Storage losses were 10.9% for the bunker-stored mixture
Numerical model for granular compaction under vertical tapping
A simple numerical model is used to simulate the effect of vertical taps on a
packing of monodisperse hard spheres. Our results are in agreement with an
experimantal work done in Chicago and with other previous models, especially
concerning the dynamics of the compaction, the influence of the excitation
strength on the compaction efficiency, and some ageing effects. The principal
asset of the model is that it allows a local analysis of the packings. Vertical
and transverse density profiles are used as well as size and volume
distributions of the pores. An interesting result concerns the appearance of a
vertical gradient in the density profiles during compaction. Furthermore, the
volume distribution of the pores suggests that the smallest pores, ranging in
size between a tetrahedral and an octahedral site, are not strongly affected by
the tapping process, in contrast to the largest pores which are more sensitive
to the compaction of the packing.Comment: 8 pages, 15 figures (eps), to be published in Phys. Rev. E. Some
corrections have been made, especially in paragraph IV
Long-Term Variations in the Growth and Decay Rates of Sunspot Groups
Using the combined Greenwich (1874-1976) and Solar Optical Observatories
Network (1977-2009) data on sunspot groups, we study the long-term variations
in the mean daily rates of growth and decay of sunspot groups. We find that the
minimum and the maximum values of the annually averaged daily mean growth rates
are ~52% per day and ~183% per day, respectively, whereas the corresponding
values of the annually averaged daily mean decay rates are ~21% per day and
~44% per day, respectively. The average value (over the period 1874-2009) of
the growth rate is about 70% more than that of the decay rate. The growth and
the decay rates vary by about 35% and 13%, respectively, on a 60-year
time-scale. From the beginning of Cycle 23 the growth rate is substantially
decreased and near the end (2007-2008) the growth rate is lowest in the past
about 100 years.Comment: 1 table, 13 figures, accepted by Solar Physic
Transport properties of heterogeneous materials derived from Gaussian random fields: Bounds and Simulation
We investigate the effective conductivity () of a class of
amorphous media defined by the level-cut of a Gaussian random field. The three
point solid-solid correlation function is derived and utilised in the
evaluation of the Beran-Milton bounds. Simulations are used to calculate
for a variety of fields and volume fractions at several different
conductivity contrasts. Relatively large differences in are observed
between the Gaussian media and the identical overlapping sphere model used
previously as a `model' amorphous medium. In contrast shows little
variability between different Gaussian media.Comment: 15 pages, 14 figure
Beta-delayed proton emission in the 100Sn region
Beta-delayed proton emission from nuclides in the neighborhood of 100Sn was
studied at the National Superconducting Cyclotron Laboratory. The nuclei were
produced by fragmentation of a 120 MeV/nucleon 112Sn primary beam on a Be
target. Beam purification was provided by the A1900 Fragment Separator and the
Radio Frequency Fragment Separator. The fragments of interest were identified
and their decay was studied with the NSCL Beta Counting System (BCS) in
conjunction with the Segmented Germanium Array (SeGA). The nuclei 96Cd, 98Ing,
98Inm and 99In were identified as beta-delayed proton emitters, with branching
ratios bp = 5.5(40)%, 5.5+3 -2%, 19(2)% and 0.9(4)%, respectively. The bp for
89Ru, 91,92Rh, 93Pd and 95Ag were deduced for the first time with bp = 3+1.9
-1.7%, 1.3(5)%, 1.9(1)%, 7.5(5)% and 2.5(3)%, respectively. The bp = 22(1)% for
101Sn was deduced with higher precision than previously reported. The impact of
the newly measured bp values on the composition of the type-I X-ray burst ashes
was studied.Comment: 15 pages, 14 Figures, 4 Table
Nonlinear anomalous diffusion equation and fractal dimension: Exact generalized gaussian solution
In this work we incorporate, in a unified way, two anomalous behaviors, the
power law and stretched exponential ones, by considering the radial dependence
of the -dimensional nonlinear diffusion equation where , ,
, and are real parameters and is a time-dependent
source. This equation unifies the O'Shaugnessy-Procaccia anomalous diffusion
equation on fractals () and the spherical anomalous diffusion for
porous media (). An exact spherical symmetric solution of this
nonlinear Fokker-Planck equation is obtained, leading to a large class of
anomalous behaviors. Stationary solutions for this Fokker-Planck-like equation
are also discussed by introducing an effective potential.Comment: Latex, 6 pages. To appear in Phys. Rev.
- …