26,035 research outputs found
Geometrically nonlinear static and dynamic analysis of arbitrarily loaded shells of revolution
Computer program on axisymmetric response of shells with other meridional geometries and response of shells subjected to asymmetric loads is described. Description of theory, method of solution, instructions for preparing input data, and two sample problems to illustrate data preparation and output format are included
The Regularization of the Fermion Determinant in Chiral Quark Models
The momentum dependence of the quark self energy gives a physically motivated
and consistent regularization of both the real and imaginary parts of the quark
loop contribution to the meson action. We show that the amplitudes for
anomalous processes are always reproduced correctly.Comment: 12/8 pages (b/l), plain TeX with harvmac, SphT93/13
Mode-matching analysis of a shielded rectangular dielectric-rod waveguide
Rectangular cross-section dielectric waveguides are widely used at millimeter wavelengths. In addition, shielded
dielectric resonators having a square cross-section are often used as filter elements, however there is almost no information available on the effect of the shield. Rectangular or square dielectric waveguide is notoriously difficult to analyze, because of the singular behaviour of the fields at the corners. Most published analyses are for materials with a low dielectric constant, and do not include the effects of a shield.
This paper describes a numerically efficient mode matching method for the analysis of shielded dielectric rod waveguide, which is applicable to both low and high dielectric constant materials. The effect of the shield on the propagation behaviour is studied. The shield dimensions
may be selected such that the shield has a negligible effect, so that results can be compared with free space data. The results are verified by comparison with several sets of published data, and have been confirmed by measurement for a nominal 'e' r of 37.4
Incompatible sets of gradients and metastability
We give a mathematical analysis of a concept of metastability induced by
incompatibility. The physical setting is a single parent phase, just about to
undergo transformation to a product phase of lower energy density. Under
certain conditions of incompatibility of the energy wells of this energy
density, we show that the parent phase is metastable in a strong sense, namely
it is a local minimizer of the free energy in an neighbourhood of its
deformation. The reason behind this result is that, due to the incompatibility
of the energy wells, a small nucleus of the product phase is necessarily
accompanied by a stressed transition layer whose energetic cost exceeds the
energy lowering capacity of the nucleus. We define and characterize
incompatible sets of matrices, in terms of which the transition layer estimate
at the heart of the proof of metastability is expressed. Finally we discuss
connections with experiment and place this concept of metastability in the
wider context of recent theoretical and experimental research on metastability
and hysteresis.Comment: Archive for Rational Mechanics and Analysis, to appea
Parametrizing the time-variation of the "surface term" of stellar p-mode frequencies: application to helioseismic data
The solar-cyle variation of acoustic mode frequencies has a frequency
dependence related to the inverse mode inertia. The discrepancy between model
predictions and measured oscillation frequencies for solar and solar-type
stellar acoustic modes includes a significant frequency-dependent term known as
the surface term that is also related to the inverse mode inertia. We
parametrize both the surface term and the frequency variations for low-degree
solar data from Birmingham Solar-Oscillations Network (BiSON) and medium-degree
data from the Global Oscillations Network Group (GONG) using the mode inertia
together with cubic and inverse frequency terms. We find that for the central
frequency of rotationally split multiplets the cubic term dominates both the
average surface term and the temporal variation, but for the medium-degree case
the inverse term improves the fit to the temporal variation. We also examine
the variation of the even-order splitting coefficients for the medium-degree
data and find that, as for the central frequency, the latitude-dependent
frequency variation, which reflects the changing latitudinal distribution of
magnetic activity over the solar cycle, can be described by the combination of
a cubic and an inverse function of frequency scaled by inverse mode inertia.
The results suggest that this simple parametrization could be used to assess
the activity-related frequency variation in solar-like asteroseismic targets.Comment: 13 pages, 11 figures. Accepted by MNRAS 13 October 201
Pore-blockade Times for Field-Driven Polymer Translocation
We study pore blockade times for a translocating polymer of length ,
driven by a field across the pore in three dimensions. The polymer performs
Rouse dynamics, i.e., we consider polymer dynamics in the absence of
hydrodynamical interactions. We find that the typical time the pore remains
blocked during a translocation event scales as ,
where is the Flory exponent for the polymer. In line with our
previous work, we show that this scaling behaviour stems from the polymer
dynamics at the immediate vicinity of the pore -- in particular, the memory
effects in the polymer chain tension imbalance across the pore. This result,
along with the numerical results by several other groups, violates the lower
bound suggested earlier in the literature. We discuss why
this lower bound is incorrect and show, based on conservation of energy, that
the correct lower bound for the pore-blockade time for field-driven
translocation is given by , where is the viscosity of
the medium surrounding the polymer.Comment: 14 pages, 6 figures, slightly shorter than the previous version; to
appear in J. Phys.: Cond. Ma
- …