1,646 research outputs found
Crossovers between epigenesis and epigenetics. A multicenter approach to the history of epigenetics (1901-1975)
The origin of epigenetics has been traditionally traced back to Conrad Hal Waddington's foundational work in 1940s. The aim of the present paper is to reveal a hidden history of epigenetics, by means of a multicenter approach. Our analysis shows that genetics and embryology in early XX century--far from being non-communicating vessels--shared similar questions, as epitomized by Thomas Hunt Morgan's works. Such questions were rooted in the theory of epigenesis and set the scene for the development of epigenetics. Since the 1950s, the contribution of key scientists (Mary Lyon and Eduardo Scarano), as well as the discussions at the international conference of Gif-sur-Yvette (1957) paved the way for three fundamental shifts of focus: 1. From the whole embryo to the gene; 2. From the gene to the complex extranuclear processes of development; 3. From cytoplasmic inheritance to the epigenetics mechanisms
Recursive Motion and Structure Estimation with Complete Error Characterization
We present an algorithm that perfom recursive estimation
of ego-motion andambient structure from a stream of monocular Perspective images of a number of feature points. The algorithm is based on an Extended Kalman Filter (EKF) that integrates over time the instantaneous motion and structure measurements computed by a 2-perspective-views step. Key features of our filter are (I) global observability of the model, (2) complete on-line characterization of the uncertainty of the measurements provided by the two-views step. The filter is thus guaranteed to be well-behaved regardless of the particular motion undergone by the observel: Regions of motion space that do not allow recovery of structure (e.g. pure rotation) may be crossed while maintaining good estimates of structure and motion; whenever reliable measurements
are available they are exploited. The algorithm works well for arbitrary motions with minimal smoothness assumptions and no ad hoc tuning. Simulations are presented that illustrate these characteristics
High-speed data transfer with FPGAs and QSFP+ modules
We present test results and characterization of a data transmission system
based on a last generation FPGA and a commercial QSFP+ (Quad Small Form
Pluggable +) module. QSFP+ standard defines a hot-pluggable transceiver
available in copper or optical cable assemblies for an aggregated bandwidth of
up to 40 Gbps. We implemented a complete testbench based on a commercial
development card mounting an Altera Stratix IV FPGA with 24 serial transceivers
at 8.5 Gbps, together with a custom mezzanine hosting three QSFP+ modules. We
present test results and signal integrity measurements up to an aggregated
bandwidth of 12 Gbps.Comment: 5 pages, 3 figures, Published on JINST Journal of Instrumentation
proceedings of Topical Workshop on Electronics for Particle Physics 2010,
20-24 September 2010, Aachen, Germany(R Ammendola et al 2010 JINST 5 C12019
Synthesis, molecular modeling and biological evaluation of two new chicoric acid analogs
Two conformationally constrained compounds similar to chicoric acid but lacking the catechol and carboxyl groups were prepared. In these analogues, the single bond between the two caffeoyl fragments has been replaced with a chiral oxirane ring and both aromatic residues modified protecting completely or partially the catechol moiety as methyl ether. Preliminary molecular modelling studies carried out on the two analogues showed interactions near the active site of HIV integrase; however, in comparison with raltegravir, the biological evaluation confirmed that CAA-1 and CAA-2 were unable to inhibit infection at lower concentration
GPU-based Real-time Triggering in the NA62 Experiment
Over the last few years the GPGPU (General-Purpose computing on Graphics
Processing Units) paradigm represented a remarkable development in the world of
computing. Computing for High-Energy Physics is no exception: several works
have demonstrated the effectiveness of the integration of GPU-based systems in
high level trigger of different experiments. On the other hand the use of GPUs
in the low level trigger systems, characterized by stringent real-time
constraints, such as tight time budget and high throughput, poses several
challenges. In this paper we focus on the low level trigger in the CERN NA62
experiment, investigating the use of real-time computing on GPUs in this
synchronous system. Our approach aimed at harvesting the GPU computing power to
build in real-time refined physics-related trigger primitives for the RICH
detector, as the the knowledge of Cerenkov rings parameters allows to build
stringent conditions for data selection at trigger level. Latencies of all
components of the trigger chain have been analyzed, pointing out that
networking is the most critical one. To keep the latency of data transfer task
under control, we devised NaNet, an FPGA-based PCIe Network Interface Card
(NIC) with GPUDirect capabilities. For the processing task, we developed
specific multiple ring trigger algorithms to leverage the parallel architecture
of GPUs and increase the processing throughput to keep up with the high event
rate. Results obtained during the first months of 2016 NA62 run are presented
and discussed
Hypoxia-induced nitric oxide production and tumour perfusion is inhibited by pegylated arginine deiminase (ADI-PEG20).
The hypoxic tumour microenvironment represents an aggressive, therapy-resistant compartment. As arginine is required for specific hypoxia-induced processes, we hypothesised that arginine-deprivation therapy may be useful in targeting hypoxic cancer cells. We explored the effects of the arginine-degrading agent ADI-PEG20 on hypoxia-inducible factor (HIF) activation, the hypoxia-induced nitric oxide (NO) pathway and proliferation using HCT116 and UMUC3 cells and xenografts. The latter lack argininosuccinate synthetase (ASS1) making them auxotrophic for arginine. In HCT116 cells, ADI-PEG20 inhibited hypoxic-activation of HIF-1α and HIF-2α, leading to decreased inducible-nitric oxide synthase (iNOS), NO-production, and VEGF. Interestingly, combining hypoxia and ADI-PEG20 synergistically inhibited ASS1. ADI-PEG20 inhibited mTORC1 and activated the unfolded protein response providing a mechanism for inhibition of HIF and ASS1. ADI-PEG20 inhibited tumour growth, impaired hypoxia-associated NO-production, and decreased vascular perfusion. Expression of HIF-1α/HIF-2α/iNOS and VEGF were reduced, despite an increased hypoxic tumour fraction. Similar effects were observed in UMUC3 xenografts. In summary, ADI-PEG20 inhibits HIF-activated processes in two tumour models with widely different arginine biology. Thus, ADI-PEG20 may be useful in the clinic to target therapy-resistant hypoxic cells in ASS1-proficient tumours and ASS1-deficient tumours.Thanks to Dr John Bomalaski, (Polaris Pharmaceuticals, Inc) for supplying the ADI-PEG20, to Dr Simon S Hoer for useful discussions and to members of Histopathology/ISH (CRUK Cambridge Institute, UK) for IHC and imaging assistance. This work was supported by the Wellcome Trust and the NIHR Cambridge Biomedical Research Centre Senior Investigator Awards (to P.H.M., supporting N.B.), EU FP7 Metoxia Grant agreement no. 222741 (to P.H.M., supporting G.C.), UCL Cancer Research UK Centre (to M.R.), King’s College London and UCL Comprehensive Cancer Imaging Centre, Cancer Research UK and EPSRC in association with the Medical Research Council (MRC), the DoH (England: to R.B.P.), MRC Cancer Unit Core Funding (to C.F., supporting E.G.).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/srep2295
NaNet: a Low-Latency, Real-Time, Multi-Standard Network Interface Card with GPUDirect Features
While the GPGPU paradigm is widely recognized as an effective approach to
high performance computing, its adoption in low-latency, real-time systems is
still in its early stages.
Although GPUs typically show deterministic behaviour in terms of latency in
executing computational kernels as soon as data is available in their internal
memories, assessment of real-time features of a standard GPGPU system needs
careful characterization of all subsystems along data stream path.
The networking subsystem results in being the most critical one in terms of
absolute value and fluctuations of its response latency.
Our envisioned solution to this issue is NaNet, a FPGA-based PCIe Network
Interface Card (NIC) design featuring a configurable and extensible set of
network channels with direct access through GPUDirect to NVIDIA Fermi/Kepler
GPU memories.
NaNet design currently supports both standard - GbE (1000BASE-T) and 10GbE
(10Base-R) - and custom - 34~Gbps APElink and 2.5~Gbps deterministic latency
KM3link - channels, but its modularity allows for a straightforward inclusion
of other link technologies.
To avoid host OS intervention on data stream and remove a possible source of
jitter, the design includes a network/transport layer offload module with
cycle-accurate, upper-bound latency, supporting UDP, KM3link Time Division
Multiplexing and APElink protocols.
After NaNet architecture description and its latency/bandwidth
characterization for all supported links, two real world use cases will be
presented: the GPU-based low level trigger for the RICH detector in the NA62
experiment at CERN and the on-/off-shore data link for KM3 underwater neutrino
telescope
- …
