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1. Introduction

Among the three enzymes encoded by HIV-1 pol gene and translated as apolyprotein, pro-
tease, reverse transcriptase and integrase (IN), the latter was an ‘orphan’ in terms of approved 
antiretroviral drugs, until the FDA approval of raltegravir (Steigbigel et al. 2008; McColl & 
Chen 2010) (Figure 1) in late 2007 (brand name Isentress).

Currently, other IN inhibitors are in use: Elvitegravir (Figure 1), trade name Vitekta, approved 
by the FDA on August 2012, a low molecular weight that shares the core structure of quinolone 
antibiotics (Shimura et al. 2007) and dolutegravir (Figure 1), brand name Tivicay, approved by 
the FDA in 2013 and recently gained European approval in January 2014 (Eron et al. 2013).

ABSTRACT
Two conformationally constrained compounds similar to chicoric acid 
but lacking the catechol and carboxyl groups were prepared. In these 
analogues, the single bond between the two caffeoyl fragments has 
been replaced with a chiral oxirane ring and both aromatic residues 
modified protecting completely or partially the catechol moiety as 
methyl ether. Preliminary molecular modeling studies carried out 
on the two analogs showed interactions near the active site of HIV 
integrase; however, in comparison with raltegravir, the biological 
evaluation confirmed that CAA-1 and CAA-2 were unable to inhibit 
infection at lower concentration.
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2  G. RIGHI ET Al.

The HIV-IN, 32 kDa protein containing 288 amino acids, catalyses the virus DNA integration 
in the cell’s genetic code allowing its replication; consequently, this enzyme represents an 
attractive target for the antiretroviral therapy. Its structure has been separately identified: 
the N-terminal domain, the central core and the C-terminal domain. In the first two parts, 
bivalent cations are involved, zinc in the N-terminal domain and magnesium and manganese 
in the central core, respectively (Brown 1990; Sakai et al. 1993). IN functions in a two-step 
manner by initially removing a dinucleotide unit from the 3′-ends of the viral DNA (termed 
‘3′-processing’), with the 3′-processed strands then being transferred from the cytoplasm to 
the nucleus where they are introduced into the host DNA (termed ‘strand transfer’).

It is known that many compounds, as peptides, oligonucleotides and small polyhydroxylated 
aromatic compounds inhibit HIV-IN because they are involved in the metal chelation (Reinke et 
al. 2002; Reinke et al. 2004). This suggests that the formation of coordination complexes with one 
or two bivalent ions is the key factor in the inhibition (Kawasuji et al. 2006).

Among all reports in the literature, l-chicoric acid, a compound extracted from a variety 
of plant species (Chkhikvishvili & Kharebava 2001; Hammami et al. 2013; Elansary & Mahmoud 
2015), is one of the most potent HIV-IN inhibitors with moderate anti-HIV activity (lee et al. 
2007; Dayam et al. 2008), exhibiting IC50 values of 0.15 μM for the 3′-P and 0.13 μM for the 
ST, an ED50 concentration of 1–2 μM and a CT5 value of 264 μM.

Numerous SAR studies indicate that the presence of bis-catechol and carboxylic groups 
in this molecule is of critical importance for its anti-HIV activity. Nevertheless, these and 
other structural characteristics make it a weak candidate as a drug: (1) low permeability, (2) 
liability of the two ester groups, (3) potential toxicity associated with catecholic groups, (4) 
relatively high number of flexible bonds that could limit oral bioavailability (Veber et al. 
2002). These considerations have prompted in the last years the preparation of series of 
analogues with structural features of l-chicoric acid to develop more active and specific 
inhibitors. (Hwang et al. 2001; Charvat et al. 2006; Chhipa et al. 2014).

In this regard, we synthesised two conformationally constrained analogues replacing the 
single bond between the two caffeoyl fragments with a chiral oxirane ring.

An already reported incorporation of cyclohexane ring as central linker (lin et al. 1999) 
did not affect IN strand transfer inhibitory potency, even if antiviral activity decreased (Chhipa 

Figure 1. IN inhibitors currently in use.

Figure 2. analogs of l-chicoric acid.
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et al. 2014). In our analogues, also the two cinnamic residues have been modified protecting 
completely or partially the catechol moiety as methyl ether (Figure 2).

2. Results and discussion

2.1. Chemistry

Retrosynthetic analysis towards the target compounds CAA-1 and CAA-2 involves three 
crucial steps: two esterification steps with the appropriate cinnamic partners and the 
Sharpless asymmetric epoxidation.

According to this plan, the preparation of epoxy alcohol 4 has been carried out from the 
commercially available cis-but-2-en-1,4-diol 1 (Scheme 1). The monoprotection of the diol 
as tertbutyldimethylsilyl ether, readily provides compound 2 (McDougal et al. 1986). 
Subsequent cis/trans isomerisation (Corey & Suggs 1975) afforded the allylic alcohol 3 suit-
able for the Sharpless epoxidation (Gao et al. 1987), which provided the epoxide 4 in good 
yield and satisfactory ee%.

The esterification with 3,4-dimethoxycinnamic acid was carried out with DCC/DMAP (N,N′-
dicyclohexylcarbodiimide/(4-(dimethylamino)pyridine) in refluxing DCM (dichloromethane). 
The cleavage of the silyl ether present in the ester 5, gave the alcohol 6, then submitted to 
esterification with another 3,4-dimethoxycinnamic acid partner to afford the diester CAA-1, 
the first analogue of l-chicoric acid.

The second analogue of l-chicoric acid CAA-2 was synthesised utilising a pathway similar 
to CAA-1, in which the esterification conditions were modified (Appendino et al. 2002). In 
this case, the cinnamic partner was the ferulic, and consequently, we used a method that 
enabled us to obtain the ester 7 chemoselectively without necessitating protection of 

Scheme 1. reagents and conditions: (a) Nah, tBdMscl (tert-butyldimethylsilyl chloride), thF, 0 °c, 81%; 
(b) i) Pdc (pyridinium chlorochromate), ch2cl2; ii) NaBh4, ch3oh, 0  °c, 67% (two step); (c) t-Buooh, 
ti(o-i-Pr)4, (+)-det (diethyl l-(+)-tartrate), ch2cl2, −20 °c; 86%; (d) (Meo)2c6h3(ch)2cooh, dcc/dMaP 
(N,N′-dicyclohexylcarbodiimide/(4-(dimethylamino)pyridine), ch2cl2, reflux, 87%; (e) (Meo)(ho)
c6h3(ch)2cooh, dIad (diisopropyl azodicarboxylate), tPP (triphenylphosphine), thF, 57%; (f ) tBaF 
(tetrabutylammonium fluoride), thF, rt, 96%; (g) (Meo)2c6h3(ch)2cooh, dcc, dMaP, ch2cl2, reflux, 68%. 
(h) (Meo)(ho)c6h3(ch)2cooh, dIad, tPP, thF, 26%.
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4  G. RIGHI ET Al.

phenolic group (Swamy et al. 2009). After deprotection of the alcoholic group of 7, the latter 
esterification was carried out under the same conditions, thereby producing CAA-2, although 
in low yield.

2.2. Molecular modeling: a preliminary study

Docking studies were performed in order to investigate the binding of the ligands and metal 
complexes interactions in the active site of the protein.

According to docking results of CAA-1, this compound interacts with the active site by 
means of hydrogen bonding to the amino acid residue Asn117 and, in this bound orientation, 
forms coordinate bonds with Mg2+ ion by dimethyl catecholic function (Figure 3(a)). The 
mean binding energy (MBE) is −2.95 kcal/mol and the estimated free energy of binding 
(EFEB, ΔGbind) is −3.17 kcal/mol, while the estimated inhibition constant (EIC, Ki) is 4.78 mM. 
Although these results seemed to suggest favourable interactions and binding with the 
active site of IN, the docking result was quite low and consistent with the biological evalu-
ation data (Table 1).

A trend quite similar to CAA-1 was observed for CAA-2 and, as shown in Figure 3(b), the 
two compounds were nearly superimposable.

2.3. Biological evaluation

Compounds CAA-1 and CAA-2 were tested for their cytotoxic activity on monocytoid cell 
line u937 through an assay assessing the inhibition of mitochondrial metabolic activity. The 

Figure 3. (a) Interaction of CAA-1 with the hIV Integrase active side; (b) Interaction of CAA-1 and caa-2 
with the hIV integrase-active site.
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cytotoxic effect of CAA-1 and CAA-2 were compared to the one of a well-known drug inhib-
itor of HIV-IN, raltegravir.

The results indicated that CAA-1 was not cytotoxic towards u937 cells exhibiting 
IC50 > 1000 μM, while CAA-2 exhibited a cytotoxic effect overlapping that of raltegravir, about 
100 μM. A potential functional activity of CAA-1 and CAA-2 as antiretroviral was assessed 
by assaying their effect on infection of peripheral blood mononuclear cells with HIV. The 
results showed that CAA-1 and CAA-2 were unable to inhibit infection at lower concentration 
in comparison with raltegravir.

Although the functional activity revealed that CAA-1 and CAA-2 were not efficacious in 
inhibiting HIV infection, their low or equal cytotoxicity in respect to raltegravir, encourages 
improving their structure – target activity. Actually considering that one of the main draw-
backs in HIV infection is the outcome of drugs resistant strains there is urgent need to design 
and evaluate new antiretroviral molecules.

Therefore, CAA-1 or CAA-2 skeleton could represent a lead structure that could undergo 
further synthetic changes to increase the specific activity.

3. Conclusion

We reported the synthesis of two conformationally constrained analogues of l-chicoric acid, 
where the single bond between the two caffeoyl fragments has been replaced with a chiral 
oxirane ring and both aromatic residues modified protecting completely or partially the 
catechol moiety as methyl ether.

Even though the preliminary molecular modelling studies carried out on the two ana-
logues seemed to indicate favourable interactions and tight binding with the active site of 
IN, the biological evaluation showed that CAA-1 and CAA-2 were unable to inhibit infection 
at lower concentration in comparison with raltegravir. Nevertheless, considering their low 
or equal cytotoxicity in respect to raltegravir, improvement on their structure – target activity 
could be valuable.

Supplementary material

Supplementary material regarding the characterisation of all new compounds reported in this article, 
the molecular modelling and the biological evaluation sections are available online.

Table 1. amino acids interactions and hydrogen bonding.

aM.B.e.= Mean binding energy(kcal/mol).
be.F.e.B. = estimated free energy of binding(kcal/mol).
ce.I.c., Ki = estimated inhibition constant, Ki.

ligands %cluster M.B.E.a E.F.E.B.b E.I.C.,Ki
c Interaction aa, H-Bonds

CAA-1 55 −2,95 −3,17 14,78 mM asP64 asP116 ASN117 Phe139Ile141 
GlN148 GlY149 Ile151

caa-2 89 −2,46 −2,70 10,45 mM ASP64 asP116 ASN117 Ile141GlN148 
GlY149 Ile151 MG2210

l-chicoric acid 12 −7,35 −9,00 253,72 nM asP64 cYs65 thr66 HIS67ASP116 
GlN148 Ile151 Glu152 asN155LYS-
156LYS159 MG2210
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