'Institute of Electrical and Electronics Engineers (IEEE)'
Abstract
We present an algorithm that perfom recursive estimation
of ego-motion andambient structure from a stream of monocular Perspective images of a number of feature points. The algorithm is based on an Extended Kalman Filter (EKF) that integrates over time the instantaneous motion and structure measurements computed by a 2-perspective-views step. Key features of our filter are (I) global observability of the model, (2) complete on-line characterization of the uncertainty of the measurements provided by the two-views step. The filter is thus guaranteed to be well-behaved regardless of the particular motion undergone by the observel: Regions of motion space that do not allow recovery of structure (e.g. pure rotation) may be crossed while maintaining good estimates of structure and motion; whenever reliable measurements
are available they are exploited. The algorithm works well for arbitrary motions with minimal smoothness assumptions and no ad hoc tuning. Simulations are presented that illustrate these characteristics