12,966 research outputs found

    TDRSS telecommunications system, PN code analysis

    Get PDF
    The pseudo noise (PN) codes required to support the TDRSS telecommunications services are analyzed and the impact of alternate coding techniques on the user transponder equipment, the TDRSS equipment, and all factors that contribute to the acquisition and performance of these telecommunication services is assessed. Possible alternatives to the currently proposed hybrid FH/direct sequence acquisition procedures are considered and compared relative to acquisition time, implementation complexity, operational reliability, and cost. The hybrid FH/direct sequence technique is analyzed and rejected in favor of a recommended approach which minimizes acquisition time and user transponder complexity while maximizing probability of acquisition and overall link reliability

    Global stability analysis of birhythmicity in a self-sustained oscillator

    Full text link
    We analyze global stability properties of birhythmicity in a self-sustained system with random excitations. The model is a multi-limit cycles variation of the van der Pol oscillatorintroduced to analyze enzymatic substrate reactions in brain waves. We show that the two frequencies are strongly influenced by the nonlinear coefficients α\alpha and β\beta. With a random excitation, such as a Gaussian white noise, the attractor's global stability is measured by the mean escape time τ\tau from one limit-cycle. An effective activation energy barrier is obtained by the slope of the linear part of the variation of the escape time τ\tau versus the inverse noise-intensity 1/D. We find that the trapping barriers of the two frequencies can be very different, thus leaving the system on the same attractor for an overwhelming time. However, we also find that the system is nearly symmetric in a narrow range of the parameters.Comment: 17 pages, 8 figures, to appear on Choas, 201

    Shielding and localization in presence of long range hopping

    Full text link
    We investigate a paradigmatic model for quantum transport with both nearest-neighbor and infinite range hopping coupling (independent of the position). Due to long range homogeneous hopping, a gap between the ground state and the excited states can be induced, which is mathematically equivalent to the superconducting gap. In the gapped regime, the dynamics within the excited states subspace is shielded from long range hopping, namely it occurs as if long range hopping would be absent. This is a cooperative phenomenon since shielding is effective over a time scale which diverges with the system size. We named this effect {\it Cooperative Shielding}. We also discuss the consequences of our findings on Anderson localization. Long range hopping is usually thought to destroy localization due to the fact that it induces an infinite number of resonances. Contrary to this common lore we show that the excited states display strong localized features when shielding is effective even in the regime of strong long range coupling. A brief discussion on the extension of our results to generic power-law decaying long range hopping is also given. Our preliminary results confirms that the effects found for the infinite range case are generic.Comment: 7 pages, 9 figur

    Three-Point Statistics from a New Perspective

    Full text link
    Multipole expansion of spatial three-point statistics is introduced as a tool for investigating and displaying configuration dependence. The novel parametrization renders the relation between bi-spectrum and three-point correlation function especially transparent as a set of two-dimensional Hankel transforms. It is expected on theoretical grounds, that three-point statistics can be described accurately with only a few multipoles. In particular, we show that in the weakly non-linear regime, the multipoles of the reduced bispectrum, QlQ_l, are significant only up to quadrupole. Moreover, the non-linear bias in the weakly non-linear regime only affects the monopole order of these statistics. As a consequence, a simple, novel set of estimators can be constructed to constrain galaxy bias. In addition, the quadrupole to dipole ratio is independent of the bias, thus it becomes a novel diagnostic of the underlying theoretical assumptions: weakly non-linear gravity and perturbative local bias. To illustrate the use of our approach, we present predictions based on both power law, and CDM models. We show that the presently favoured SDSS-WMAP concordance model displays strong ``baryon bumps'' in the QlQ_l's. Finally, we sketch out three practical techniques estimate these novel quantities: they amount to new, and for the first time edge corrected, estimators for the bispectrum.Comment: 5 pages 6 figures, ApL accepte

    Making electromagnetic wavelets

    Full text link
    Electromagnetic wavelets are constructed using scalar wavelets as superpotentials, together with an appropriate polarization. It is shown that oblate spheroidal antennas, which are ideal for their production and reception, can be made by deforming and merging two branch cuts. This determines a unique field on the interior of the spheroid which gives the boundary conditions for the surface charge-current density necessary to radiate the wavelets. These sources are computed, including the impulse response of the antenna.Comment: 29 pages, 4 figures; minor corrections and addition

    Effective Fokker-Planck Equation for Birhythmic Modified van der Pol Oscillator

    Full text link
    We present an explicit solution based on the phase-amplitude approximation of the Fokker-Planck equation associated with the Langevin equation of the birhythmic modified van der Pol system. The solution enables us to derive probability distributions analytically as well as the activation energies associated to switching between the coexisting different attractors that characterize the birhythmic system. Comparing analytical and numerical results we find good agreement when the frequencies of both attractors are equal, while the predictions of the analytic estimates deteriorate when the two frequencies depart. Under the effect of noise the two states that characterize the birhythmic system can merge, inasmuch as the parameter plane of the birhythmic solutions is found to shrink when the noise intensity increases. The solution of the Fokker-Planck equation shows that in the birhythmic region, the two attractors are characterized by very different probabilities of finding the system in such a state. The probability becomes comparable only for a narrow range of the control parameters, thus the two limit cycles have properties in close analogy with the thermodynamic phases

    Connection between accretion disk and superluminal radio jets and the role of radio plateau state in GRS 1915+105

    Full text link
    We investigate the association between the accretion disk during radio plateau state and the following superluminal relativistic radio jets with peak intensity varies from 200 mJy to 1000 mJy observed over a period of five years and present the evidences of direct accretion disc-jet connection in microquasar GRS 1915+105. We have analysed RXTE PCA/HEXTE X-ray data and have found that the accretion rate, m˙accr\dot{m}_{accr}, as inferred from the X-ray flux, is very high during the radio plateaux. We suggest that the accretion disk during the radio plateaux always associated with radiation-driven wind which is manifested in the form of enhanced absorption column density for X-ray and the depleted IR emission. We find that the wind density increases with the accretion disk luminosity during the radio plateaux. The wind density is similar to the density of the warm absorber proposed in extragalactic AGNs and Quasars. We suggest a simple model for the origin of superluminal relativistic jets. Finally, We discuss the implications of this work for galactic microquasars and the extragalactic AGNs and Quasars.Comment: 9 pages, 6 Figures, Accepted for publication in Ap
    • …
    corecore