1,898,365 research outputs found

    Above-well, Stark, and potential-barrier resonances of an open square well in a static external electric field

    Full text link
    Besides the well known Stark resonances, which are localized in the potential well and tunnel through the potential barrier created by the dc-field, "strange" long and short-lived resonances are analytically obtained. These resonances are not localized inside the potential well. We show that the narrow ones are localized above the potential well. These narrow resonances give rise to a {\it peak structure} in a 1D scattering experiment. We also show that the broad overlapping resonances are associated with the static electric field potential barrier. These "strange" overlapping resonances do not give rise to a {\it peak structure} in a 1D scattering experiment. We propose a 2D experimental set-up where in principle these short-lived states should be observed as {\it peaks}. Broad overlapping resonances, associated only with the static electric field potential barrier, could also have observable effects in a N>1N>1 array of quantum wells in the presence of a truncated static electric field. This last problem is associated with the resonance tunnelling phenomena which are used in the construction of resonance-tunnelling diodes and transistors.Comment: submitted to Phys. Rev. A, April 08 200

    Proposed New Test of Spin Effects in General Relativity

    Get PDF
    The recent discovery of a double-pulsar PSR J0737-3039A/B provides an opportunity of unequivocally observing, for the first time, spin effects in general relativity. Existing efforts involve detection of the precession of the spinning body itself. However, for a close binary system, spin effects on the orbit may also be discernable. Not only do they add to the advance of the periastron (by an amount which is small compared to the conventional contribution) but they also give rise to a precession of the orbit about the spin direction. The measurement of such an effect would also give information on the moment of inertia of pulsars

    pi N --> Multi-pi N Scattering in the 1/N_c Expansion

    Get PDF
    We extend the 1/N_c expansion meson-baryon scattering formalism to cases in which the final state contains more than two particles. We first show that the leading-order large N_c processes proceed through resonant intermediate states (e.g., rho N or pi Delta). We then tabulate linear amplitude expressions for relevant processes and find that the pole structure of baryon resonances can be uniquely identified by their (non)appearance in eta N or mixed partial-wave pi Delta final states. We also show that quantitative predictions of pi N to pi Delta branching ratios predicted at leading order alone do not agree with measurements, but the inclusion of 1/N_c corrections is ample to explain the discrepancies.Comment: 23 pages, 3 eps figures, ReVTeX4, added reference and discussion, identical to PRD versio

    Bogoliubov transformations and exact isolated solutions for simple non-adiabatic Hamiltonians

    Get PDF
    We present a new method for finding isolated exact solutions of a class of non-adiabatic Hamiltonians of relevance to quantum optics and allied areas. Central to our approach is the use of Bogoliubov transformations of the bosonic fields in the models. We demonstrate the simplicity and efficiency of this method by applying it to the Rabi Hamiltonian.Comment: LaTeX, 16 pages, 1 figure. Minor additions and journal re

    Interaction of moving breathers with an impurity

    Get PDF
    We analyze the influence of an impurity in the evolution of moving discrete breathers in a Klein--Gordon chain with non-weak nonlinearity. Three different behaviours can be observed when moving breathers interact with the impurity: they pass through the impurity continuing their direction of movement; they are reflected by the impurity; they are trapped by the impurity, giving rise to chaotic breathers. Resonance with a breather centred at the impurity site is conjectured to be a necessary condition for the appearance of the trapping phenomenon.Comment: 4 pages, 2 figures, Proceedings of the Third Conference, San Lorenzo De El Escorial, Spain 17-21 June 200

    Systematic Inclusion of High-Order Multi-Spin Correlations for the Spin-121\over2 XXZXXZ Models

    Full text link
    We apply the microscopic coupled-cluster method (CCM) to the spin-121\over2 XXZXXZ models on both the one-dimensional chain and the two-dimensional square lattice. Based on a systematic approximation scheme of the CCM developed by us previously, we carry out high-order {\it ab initio} calculations using computer-algebraic techniques. The ground-state properties of the models are obtained with high accuracy as functions of the anisotropy parameter. Furthermore, our CCM analysis enables us to study their quantum critical behavior in a systematic and unbiased manner.Comment: (to appear in PRL). 4 pages, ReVTeX, two figures available upon request. UMIST Preprint MA-000-000
    • …
    corecore