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We analyze the influence of an impurity in the evolution of moving discrete

breathers in a Klein–Gordon chain with non-weak nonlinearity. Three different
behaviours can be observed when moving breathers interact with the impurity:
they pass through the impurity continuing their direction of movement; they are
reflected by the impurity; they are trapped by the impurity, giving rise to chaotic

breathers. Resonance with a breather centred at the impurity site is conjectured
to be a necessary condition for the appearance of the trapping phenomenon.

1. Introduction

The interaction of nonlinear localized oscillations with impurities in a sys-

tem can play an important role in its transport properties. This problem

has been studied during the last decades within different frameworks, e.g.

the scattering of kinks with impurities in the continuous sine-Gordon and

ϕ4 models 1 and in the Frenkel–Kontorova model 2. The interaction of a

moving discrete breather with an impurity in a Klein–Gordon chain has

been considered by Forinash et al 3. In this case, it is assumed that the

system has weak nonlinearity. Here, we are interested in the study of the

features of the interaction of moving discrete breathers with an impurity at

rest in a Klein–Gordon chain of oscillators with non-weak nonlinearity. We

also establish a hypothesis for the appearance of trapping of a breather by

an impurity.
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2. The Model

We consider a Klein–Gordon chain with nearest neighbours attractive in-

teractions with Hamiltonian given by:

H =
N∑

n=1

(
1

2
u̇2
n + Vn(un) +

1

2
C(un − un−1)

2

)
, (1)

where Vn(un) = Dn(e
−un − 1)2 is the substrate potential at the n-th site.

The inhomogeneity is introduced assuming a different well depth at only

one site, i.e., Dn = Do(1 + αδn,0), then we refer to the particle located

at n = 0 as an impurity. α ∈ [−1,∞) is a parameter which tunes the

magnitude of the inhomogeneity.

This Hamiltonian leads to the dynamical equations which have station-

ary and moving localized solutions (i.e., stationary and moving breathers).

The former are calculated using the methods based in the anti–continuous

limit 5 and the latter are calculated using the marginal mode method 4.

The dynamical equations can be linearized if the amplitudes of the os-

cillations are small. These equations have N − 1 non-localized solutions

(linear extended modes) and one localized solution, (linear impurity mode).

Their frequencies, ωE and ωL, respectively, are given by:

ω(q, α) =

√
ω2
o + 4C sin2

q(α)

2
, ω2

L = ω2
o +2C+sign(α)

√
α2ω4

o + 4C2,(2)

where q ∈ (0, π] if α < 0 and q ∈ [0, π) if α > 0. Figure 1 shows the

dependence on α.

3. Numerical simulations

We have studied the behaviour of moving breathers when they interact with

an impurity varying the value of the inhomogeneity parameter α. We have

found four different regimes, separated by critical values of the parameter

α 6:

• Barrier. The impurity acts as a potential barrier. It occurs either

with α > 0 or α ∈ (−1, α1) with α1 < 0. If α & 0, the breather

can pass through the impurity provided the translational velocity

is high enough 7.

• Excitation. The impurity is excited and the breather is reflected.

It occurs for α ∈ (α1, α2). This behavior is shown in figure 2.

• Trapping. The breather is trapped by the impurity. It occurs in

the interval α ∈ (α2, α3). When the moving breather is close to the

impurity, it becomes trapped while its center oscillates between the
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Figure 1. (a) Frequencies of the linear modes versus the parameter α. At α = αres

and α = αc, two different bifurcations occur, being the first one due to the resonance
between the impurity mode and the breather. (b) Different regimes in the interaction
of a moving breather with an impurity introduced as an inhomogeneity in the potential
well depth.
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Figure 2. (a) Interaction of a breather with an impurity for α = −0.52, which cor-
responds to the impurity excitation case. (b) Evolution of the moving breather for
α = −0.3, which corresponds to the trapping case. The moving breather becomes
trapped by the impurity; afterwards, the breather emits phonon radiation and its energy

centre oscillates between the sites adjacent to the impurity.

neighbouring sites, as figure 2 shows. The trapped breather emits

a great amount of phonon radiation and seems to be chaotic.

• Well. The impurity acts as a potential well. It occurs for

α ∈ (α3, 0) and consists of an acceleration of the breather as it

approaches to the impurity, and a deceleration after the impurity

has been passed through.
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4. Discussion

It is observed that the breather bifurcates with the zero solution at α =

αres. That is, for α smaller than this value, no impurity breather exists.

At α = αres, the frequency of the impurity mode coincides with the moving

breather frequency, i.e., in (2), ωL = ωb.

The scenario for the trapped breathers when α < 0 is the following: the

impurity mode has q = 0, and also all the particles of the impurity breather

vibrate in phase; this vibration pattern indicates that the impurity breather

bifurcates from the impurity mode and it will be the only localized mode

that exists when the impurity is excited for α > αres. Thus, when the

moving breather reaches the impurity, it can excite the impurity mode.

For α < αres, the moving breather is always reflected. In addition, the

impurity breather does not exist. Therefore, there might be a connection

between both facts, i.e., the existence of the impurity breather seems to be

a necessary condition in order to obtain a trapped breather.

If α > 0, the impurity mode has q = π but the impurity breather’s sites

vibrate again in phase, that is, the impurity breather does not bifurcate

from the impurity mode. There are two different localized excitations: the

tails of the (linear) impurity mode and the impurity breather. Thus, if the

moving breather reaches the impurity site, it will excite these localized exci-

tations. Therefore, we conjecture that the existence of both linear localized

entities at the same time may be the reason why the impurity is unable to

trap the breather when α > 0.

Trapping hypothesis: The existence of an impurity breather for

a given value of α is a necessary condition for the existence of trapped

breathers. However, if there exists an impurity mode with a vibration pat-

tern different from the impurity breather one’s, the trapped breather does

not to exist.
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5. JL Maŕın and S Aubry. Nonlinearity, 9:1501–1528, 1996.
6. J Cuevas, F Palmero, JFR Archilla, and FR Romero. Jour. Phys. A: Math.

Gen., 2002. In press.



5

7. J Cuevas, F Palmero, JFR Archilla, and FR Romero. Phys. Lett. A, 299:221,
2002.


