39 research outputs found

    The `Parahippocampal Place Area' Responds Selectively to High Spatial Frequencies

    Get PDF
    Defining the exact mechanisms by which the brain processes visual objects and scenes remains an unresolved challenge. Valuable clues to this process have emerged from the demonstration that clusters of neurons (“modules”) in inferior temporal cortex apparently respond selectively to specific categories of visual stimuli, such as places/scenes. However, the higher-order “category-selective” response could also reflect specific lower-level spatial factors. Here we tested this idea in multiple functional MRI experiments, in humans and macaque monkeys, by systematically manipulating the spatial content of geometrical shapes and natural images. These tests revealed that visual spatial discontinuities (as reflected by an increased response to high spatial frequencies) selectively activate a well-known place-selective region of visual cortex (the “parahippocampal place area”) in humans. In macaques, we demonstrate a homologous cortical area, and show that it also responds selectively to higher spatial frequencies. The parahippocampal place area may use such information for detecting object borders and scene details during spatial perception and navigation.National Institutes of Health (U.S.) (NIH Grant R01 MH6752)National Institutes of Health (U.S.) (grant R01 EY017081)Athinoula A. Martinos Center for Biomedical ImagingNational Center for Research Resources (U.S.)Mind Research Institut

    The History of Communications and its Implications for the Internet

    Full text link

    Birds of a Feather Flock Together: Experience-Driven Formation of Visual Object Categories in Human Ventral Temporal Cortex

    Get PDF
    The present functional magnetic resonance imaging study provides direct evidence on visual object-category formation in the human brain. Although brain imaging has demonstrated object-category specific representations in the occipitotemporal cortex, the crucial question of how the brain acquires this knowledge has remained unresolved. We designed a stimulus set consisting of six highly similar bird types that can hardly be distinguished without training. All bird types were morphed with one another to create different exemplars of each category. After visual training, fMRI showed that responses in the right fusiform gyrus were larger for bird types for which a discrete category-boundary was established as compared with not-trained bird types. Importantly, compared with not-trained bird types, right fusiform responses were smaller for visually similar birds to which subjects were exposed during training but for which no category-boundary was learned. These data provide evidence for experience-induced shaping of occipitotemporal responses that are involved in category learning in the human brain

    Where you look matters for body perception: Preferred gaze location contributes to the body inversion effect

    Get PDF
    The Body Inversion Effect (BIE; reduced visual discrimination performance for inverted compared to upright bodies) suggests that bodies are visually processed configurally; however, the specific importance of head posture information in the BIE has been indicated in reports of BIE reduction for whole bodies with fixed head position and for headless bodies. Through measurement of gaze patterns and investigation of the causal relation of fixation location to visual body discrimination performance, the present study reveals joint contributions of feature and configuration processing to visual body discrimination. Participants predominantly gazed at the (body-centric) upper body for upright bodies and the lower body for inverted bodies in the context of an experimental paradigm directly comparable to that of prior studies of the BIE. Subsequent manipulation of fixation location indicates that these preferential gaze locations causally contributed to the BIE for whole bodies largely due to the informative nature of gazing at or near the head. Also, a BIE was detected for both whole and headless bodies even when fixation location on the body was held constant, indicating a role of configural processing in body discrimination, though inclusion of the head posture information was still highly discriminative in the context of such processing. Interestingly, the impact of configuration (upright and inverted) to the BIE appears greater than that of differential preferred gaze locations

    The distribution of category and location information across object-selective regions in human visual cortex

    No full text
    Since Ungerleider and Mishkin [Underleider LG, Mishkin M (1982) Two cortical visual systems. Analysis of Visual Behavior, eds Ingle MA, Goodale MI, Masfield RJW (MIT Press, Cambridge, MA), pp 549–586] proposed separate visual pathways for processing object shape and location, steady progress has been made in characterizing the organization of the two kinds of information in extrastriate visual cortex in humans. However, to date, there has been no broad-based survey of category and location information across all major functionally defined object-selective regions. In this study, we used an fMRI region-of-interest (ROI) approach to identify eight regions characterized by their strong selectivity for particular object categories (faces, scenes, bodies, and objects). Participants viewed four types of stimuli (faces, scenes, bodies, and cars) appearing in each of three different spatial locations (above, below, or at fixation). Analyses based on the mean response and voxelwise patterns of response in each ROI reveal location information in almost all of the known object-selective regions. Furthermore, category and location information can be read out independently of one another such that most regions contain both position-invariant category information and category-invariant position information. Finally, we find substantially more location information in ROIs on the lateral than those on the ventral surface of the brain, even though these regions have equal amounts of category information. Although the presence of both location and category information in most object-selective regions argues against a strict physical separation of processing streams for object shape and location, the ability to extract position-invariant category information and category-invariant position information from the same neural population indicates that form and location information nonetheless remain functionally independent
    corecore