161 research outputs found

    Limits on I-band microvariability of the Galactic Bulge Miras

    Full text link
    We search for microvariability in a sample of 485 Mira variables with high quality I-band light curves from the second generation Optical Gravitational Lensing Experiment (OGLE-II). Rapid variations with amplitudes in the ~0.2-1.1 mag range lasting hours to days were discovered in Hipparcos data by de Laverny et al. (1998). Our search is primarily sensitive to events with time-scales of about 1 day, but retains a few percent efficiency (per object) for detecting unresolved microvariability events as short as 2 hours. We do not detect any candidate events. Assuming that the distribution of the event time profiles is identical to that from the Hipparcos light curves we derive the 95% confidence level upper limit of 0.038 per year per star for the rate of such events (1 per 26 years per average object of the ensemble). The high event rates of the order of 1 per year per star implied by the Hipparcos study in the H_P band are excluded with high confidence by the OGLE-II data in the I band. Our non-detection could still be explained by much redder spectral response of the I filter compared to the H_P band or by population differences between the bulge and the solar neighborhood. In any case, the OGLE-II I-band data provide the first limit on the rate of the postulated microvariability events in Mira stars and offer new quantitative constraints on their properties. Similar limits are obtained for other pulse shapes and a range of the assumed time-scales and size-frequency distributions.Comment: Accepted for publication in Ap

    Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy

    Full text link
    We analyze several possibilities for precisely measuring electronic transitions in atomic helium by the direct use of phase-stabilized femtosecond frequency combs. Because the comb is self-calibrating and can be shifted into the ultraviolet spectral region via harmonic generation, it offers the prospect of greatly improved accuracy for UV and far-UV transitions. To take advantage of this accuracy an ultracold helium sample is needed. For measurements of the triplet spectrum a magneto-optical trap (MOT) can be used to cool and trap metastable 2^3S state atoms. We analyze schemes for measuring the two-photon 23S→43S2^3S \to 4^3S interval, and for resonant two-photon excitation to high Rydberg states, 23S→33P→n3S,D2^3S \to 3^3P \to n^3S,D. We also analyze experiments on the singlet-state spectrum. To accomplish this we propose schemes for producing and trapping ultracold helium in the 1^1S or 2^1S state via intercombination transitions. A particularly intriguing scenario is the possibility of measuring the 11S→21S1^1S \to 2^1S transition with extremely high accuracy by use of two-photon excitation in a magic wavelength trap that operates identically for both states. We predict a ``triple magic wavelength'' at 412 nm that could facilitate numerous experiments on trapped helium atoms, because here the polarizabilities of the 1^1S, 2^1S and 2^3S states are all similar, small, and positive.Comment: Shortened slightly and reformatted for Eur. Phys. J.

    Migrations and habitat use of the smooth hammerhead shark (Sphyrna zygaena) in the Atlantic Ocean

    Get PDF
    The smooth hammerhead shark, Sphyrna zygaena, is a cosmopolitan semipelagic shark captured as bycatch in pelagic oceanic fisheries, especially pelagic longlines targeting swordfish and/or tunas. From 2012 to 2016, eight smooth hammerheads were tagged with Pop-up Satellite Archival Tags in the inter-tropical region of the Northeast Atlantic Ocean, with successful transmissions received from seven tags (total of 319 tracking days). Results confirmed the smooth hammerhead is a highly mobile species, as the longest migration ever documented for this species (> 6600 km) was recorded. An absence of a diel vertical movement behavior was noted, with the sharks spending most of their time at surface waters (0-50 m) above 23 degrees C. The operating depth of the pelagic long-line gear was measured with Minilog Temperature and Depth Recorders, and the overlap with the species vertical distribution was calculated. The overlap is taking place mainly during the night and is higher for juveniles (similar to 40% of overlap time). The novel information presented can now be used to contribute to the provision of sustainable management tools and serve as input for Ecological Risk Assessments for smooth hammerheads caught in Atlantic pelagic longline fisheries.Oceanario de Lisboa through Project "SHARK-TAG: Migrations and habitat use of the smooth hammerhead shark in the Atlantic Ocean"; Investigador-FCT from the Portuguese Foundation for Science and Technology (FCT, Fundacao para a Ciencia e Tecnologia) [Ref: IF/00253/2014]; EU European Social Fund; Programa Operacional Potencial Human
    • …
    corecore