4,076 research outputs found

    A Hubble Space Telescope Snapshot Survey of Dynamically Close Galaxy Pairs in the CNOC2 Redshift Survey

    Full text link
    We compare the structural properties of two classes of galaxies at intermediate redshift: those in dynamically close galaxy pairs, and those which are isolated. Both samples are selected from the CNOC2 Redshift Survey, and have redshifts in the range 0.1 < z <0.6. Hubble Space Telescope WFPC2 images were acquired as part of a snapshot survey, and were used to measure bulge fraction and asymmetry for these galaxies. We find that paired and isolated galaxies have identical distributions of bulge fractions. Conversely, we find that paired galaxies are much more likely to be asymmetric (R_T+R_A >= 0.13) than isolated galaxies. Assuming that half of these pairs are unlikely to be close enough to merge, we estimate that 40% +/- 11% of merging galaxies are asymmetric, compared with 9% +/- 3% of isolated galaxies. The difference is even more striking for strongly asymmetric (R_T+R_A >= 0.16) galaxies: 25% +/- 8% for merging galaxies versus 1% +/- 1% for isolated galaxies. We find that strongly asymmetric paired galaxies are very blue, with rest-frame B-R colors close to 0.80, compared with a mean (B-R)_0 of 1.24 for all paired galaxies. In addition, asymmetric galaxies in pairs have strong [OII]3727 emission lines. We conclude that close to half of the galaxy pairs in our sample are in the process of merging, and that most of these mergers are accompanied by triggered star formation.Comment: Accepted for publication in the Astronomical Journal. 40 pages, including 15 figures. For full resolution version, please see http://www.trentu.ca/physics/dpatton/hstpairs

    Applying dissipative dynamical systems to pseudorandom number generation: Equidistribution property and statistical independence of bits at distances up to logarithm of mesh size

    Full text link
    The behavior of a family of dissipative dynamical systems representing transformations of two-dimensional torus is studied on a discrete lattice and compared with that of conservative hyperbolic automorphisms of the torus. Applying dissipative dynamical systems to generation of pseudorandom numbers is shown to be advantageous and equidistribution of probabilities for the sequences of bits can be achieved. A new algorithm for generating uniform pseudorandom numbers is proposed. The theory of the generator, which includes proofs of periodic properties and of statistical independence of bits at distances up to logarithm of mesh size, is presented. Extensive statistical testing using available test packages demonstrates excellent results, while the speed of the generator is comparable to other modern generators.Comment: 6 pages, 3 figures, 3 table

    The Galaxy Populations of X-Ray Detected, Poor Groups

    Get PDF
    (Abridged) We determine the quantitative morphology and star formation properties of galaxies in six nearby X-ray detected, poor groups using multi-object spectroscopy and wide-field R imaging. We measure structural parameters for each galaxy by fitting a PSF-convolved, two component model to their surface brightness profiles. To compare directly the samples, we fade, smooth, and rebin each galaxy image so that we effectively observe each galaxy at the same redshift (9000 km/s) and physical resolution (0.87h^(-1) kpc). We compare results for the groups to a sample of field galaxies. We find that: 1) Galaxies spanning a wide range in morphological type and luminosity are well-fit by a de Vaucouleurs bulge with exponential disk profile. 2) Morphologically classifying these nearby group galaxies by their bulge fraction (B/T) is fairly robust on average, even when their redshift has increased by up to a factor of four and the effective resolution of the images is degraded by up to a factor of five. 3) The fraction of bulge-dominated systems in these groups is higher than in the field (~50% vs. ~20%). 4) The fraction of bulge-dominated systems in groups decreases with increasing radius, similar to the morphology-radius (~density) relation observed in galaxy clusters. 5) Current star formation in group galaxies is correlated with significant morphological asymmetry for disk-dominated systems (B/T<0.4). 6) The group galaxies that are most disk-dominated (B/T<0.2) are less star forming and asymmetric on average than their counterparts in the field.Comment: Accepted for publication in the Astrophysical Journal (26 pages + 12 figures); Figs 1 & 2 also available at http://www.ucolick.org/~vy/astronomy/groups_figs.tar.g

    Density and Richness of Benthic Invertebrate Populations in the North Sydenham River of Southwestern Ontario (1996-2000) Compared with Those of the St. Clair River (1990-1995)

    Get PDF
    Richness (the number of invertebrate families/sample site) and density (the number of invertebrates/sq m) of benthic populations in the North Sydenham River were measured and compared with similar estimates for the St. Clair River. Seventeen sample sites were examined from May to October over five consecutive years. At each sample site, particle size distribution of the sediment, sediment temperature, total phosphorous, total nitrogen, total carbon, and water flow rate were measured. Physical and chemical characteristics of the North Sydenham system over the 100 km run examined were less variable than those of the St. Clair. Statistically significant but weak multiple linear correlations were found for richness and density with several of the measured variables. Invertebrate populations in the North Sydenham River were less rich and less dense than those in the downstream reach of the St. Clair and exhibited a different distribution of abundance among the orders of organisms. As in the St. Clair River, some evidence of long term cycling of abundance in several families of invertebrates was found in the North Sydenham

    Recovering 3D structural properties of galaxies from SDSS-like photometry

    Full text link
    Because of the 3D nature of galaxies, an algorithm for constructing spatial density distribution models of galaxies on the basis of galaxy images has many advantages over surface density distribution approximations. We present a method for deriving spatial structure and overall parameters of galaxies from images and estimate its accuracy and derived parameter degeneracies on a sample of idealised model galaxies. The test galaxies consist of a disc-like component and a spheroidal component with varying proportions and properties. Both components are assumed to be axially symmetric and coplanar. We simulate these test galaxies as if observed in the SDSS project through ugriz filters, thus gaining a set of realistically imperfect images of galaxies with known intrinsic properties. These artificial SDSS galaxies were thereafter remodelled by approximating the surface brightness distribution with a 2D projection of a bulge+disc spatial distribution model and the restored parameters were compared to the initial ones. Down to the r-band limiting magnitude 18, errors of the restored integral luminosities and colour indices remain within 0.05 mag and errors of the luminosities of individual components within 0.2 mag. Accuracy of the restored bulge-to-disc ratios (B/D) is within 40% in most cases, and becomes worse for galaxies with low B/D, but the general balance between bulges and discs is not shifted systematically. Assuming that the intrinsic disc axial ratio is < 0.3, the inclination angles can be estimated with errors < 5deg for most of the galaxies with B/D < 2 and with errors < 15deg up to B/D = 6. Errors of the recovered sizes of the galactic components are below 10% in most cases. In general, models of disc components are more accurate than models of spheroidal components for geometrical reasons.Comment: 15 pages, 13 figures, accepted for publication in RA

    Evaluating LANDSAT-4 MSS and TM data

    Get PDF
    Interband line pixel misregistrations were determined for the four MSS bands of the Mistassini, Ontario scene and multitemporal registration of LANDSAT-4 products were tested for two different geocoded scenes. Line and pixel misregistrations are tabulated as determined by the manual ground control points and the digital band to band correlation techniques. A method was developed for determining the spectral information content of TM images for forestry applications

    The infrared imaging spectrograph (IRIS) for TMT: the science case

    Get PDF
    The InfraRed Imaging Spectrograph (IRIS) is a first-light instrument being designed for the Thirty Meter Telescope (TMT). IRIS is a combination of an imager that will cover a 16.4" field of view at the diffraction limit of TMT (4 mas sampling), and an integral field unit spectrograph that will sample objects at 4-50 mas scales. IRIS will open up new areas of observational parameter space, allowing major progress in diverse fields of astronomy. We present the science case and resulting requirements for the performance of IRIS. Ultimately, the spectrograph will enable very well-resolved and sensitive studies of the kinematics and internal chemical abundances of high-redshift galaxies, shedding light on many scenarios for the evolution of galaxies at early times. With unprecedented imaging and spectroscopy of exoplanets, IRIS will allow detailed exploration of a range of planetary systems that are inaccessible with current technology. By revealing details about resolved stellar populations in nearby galaxies, it will directly probe the formation of systems like our own Milky Way. Because it will be possible to directly characterize the stellar initial mass function in many environments and in galaxies outside of the the Milky Way, IRIS will enable a greater understanding of whether stars form differently in diverse conditions. IRIS will reveal detailed kinematics in the centers of low-mass galaxies, allowing a test of black hole formation scenarios. Finally, it will revolutionize the characterization of reionization and the first galaxies to form in the universe.Comment: to appear in Proc. SPIE 773

    The Next Generation Virgo Cluster Survey. VII. The intrinsic shapes of low-luminosity galaxies in the core of the Virgo cluster, and a comparison with the Local Group

    Full text link
    (Abridged) We investigate the intrinsic shapes of low-luminosity galaxies in the central 300 kpc of the Virgo cluster using deep imaging obtained as part of the NGVS. We build a sample of nearly 300 red-sequence cluster members in the yet unexplored 14<Mg<8-14 < M_{g} < -8 magnitude range. The observed distribution of apparent axis ratios is then fit by families of triaxial models with normally-distributed intrinsic ellipticities and triaxialities. We develop a Bayesian framework to explore the posterior distribution of the model parameters, which allows us to work directly on discrete data, and to account for individual, surface brightness-dependent axis ratio uncertainties. For this population we infer a mean intrinsic ellipticity E=0.43, and a mean triaxiality T=0.16. This implies that faint Virgo galaxies are best described as a family of thick, nearly oblate spheroids with mean intrinsic axis ratios 1:0.94:0.57. We additionally attempt a study of the intrinsic shapes of Local Group satellites of similar luminosities. For the LG population we infer a slightly larger mean intrinsic ellipticity E=0.51, and the paucity of objects with round apparent shapes translates into more triaxial mean shapes, 1:0.76:0.49. We finally compare the intrinsic shapes of NGVS low-mass galaxies with samples of more massive quiescent systems, and with field, star-forming galaxies of similar luminosities. We find that the intrinsic flattening in this low-luminosity regime is almost independent of the environment in which the galaxy resides--but there is a hint that objects may be slightly rounder in denser environments. The comparable flattening distributions of low-luminosity galaxies that have experienced very different degrees of environmental effects suggests that internal processes are the main drivers of galaxy structure at low masses--with external mechanisms playing a secondary role.Comment: Accepted to ApJ. 18 pages, 12 figure

    Rest-Frame Ultraviolet to Near Infrared Observations of an Interacting Lyman Break Galaxy at z = 4.42

    Full text link
    We present the rest-frame ultraviolet through near infrared spectral energy distribution for an interacting Lyman break galaxy at a redshift z=4.42, the highest redshift merging system known with clearly resolved tidal features. The two objects in this system - HDF-G4 and its previously unidentified companion - are both B_{435} band dropouts, have similar V_{606}-i_{775} and i_{775}-z_{850} colors, and are separated by 1", which at z=4.42 corresponds to 7 kpc projected nuclear separation; all indicative of an interacting system. Fits to stellar population models indicate a stellar mass of M_\star = 2.6\times 10^{10} M_\odot, age of \tau_\star = 720 My, and exponential star formation history with an e-folding time \tau_0 = 440 My. Using these derived stellar populations as constraints, we model the HDF-G4 system using hydrodynamical simulations, and find that it will likely evolve into a quasar by z\sim3.5, and a quiescent, compact spheroid by z\sim 2.5 similar to those observed at z > 2. And, the existence of such an object supports galaxy formation models in which major mergers drive the high redshift buildup of spheroids and black holes.Comment: 7 pages, 7 figures, accepted for publication in Ap
    corecore