460 research outputs found
Sharp flat plate heat transfer in helium at Mach numbers of 22.8 to 86.8 and in corner flow with air at Mach number of 19
Surface heat transfer rates were measured on a sharp flat plate at zero angle of attack in a hypersonic shock tunnel. The density and leading edge Knudsen number were varied to span the continuum to near free molecule regimes. The strong interaction parameter varied from 11 to 16,000 with Knudsen numbers from 0.56 to 17.1 respectively. Local heat transfer rates in the corner flow region produced by the intersection of two perpendicular flat plates with sharp leading edges were determined for various flow densities. The strength of the shock wave from the vertical plate was varied by adjusting the angle of attack from 0 to 5 deg. The unit Reynolds number varied from 1,000 to 17,200 and the Knudsen numbers from 1.6 to 27. The strong interaction parameter varied from 14 to 500
Subsonic and supersonic jet flow and acoustic characteristics and supersonic suppressors
To study the similarities and differences between subsonic and supersonic jets, velocity and impact pressure fluctuations were determined along the axis over a jet Mach number range of 0.6 to 1.4 for a 2 in. diameter convergent nozzle and for a one inch diameter jet flow. Static pressure distribution fluctuations due to shear and turbulence in the jet flow for subsonic and supersonic jets were related to acoustic radiation to the far field. Also determined were flow and acoustic characteristics of a single shroud, and multiple shroud tube and shroud suppressors for supersonic and subsonic exhaust velocities. A compressor consisting of 191 tubes and 191 shrouds decreased the primary Mach number drastically for both jet Mach numbers of 1.4 and 0.7; rms impact and static pressure fluctuations on the axis were also reduced from values existing for an equivalent area single nozzle
Heat transfer on a flat plate in helium at Mach numbers 67.3 and 87.6 and in hypersonic corner flow with air at Mach number of 19
Hypersonic heat transfer rates on flat plates in helium and in corner flow region with ai
Flow and acoustic characteristics of subsonic and supersonic jets from convergent nozzle
Acoustic and flow characteristics of subsonic and supersonic jets from convergent nozzle
Heat Transfer on a Flat Plate in Continuum to Rarefied Hypersonic Fows at Mach Numbers of 19.2 and 25.4
Surface heat transfer rates measured on flat plates in hypervelocity shock tunne
Effect of inlet disturbances on fan inlet noise during a static test
Measurements of fan rotor inlet noise taken during static test situations are at variance with aircraft engine flight data. In particular, static tests generally yield a significantly higher tone at blade passage frequency than that measured during flight. To explain this discrepancy, the extent of the influence of inlet ground vortices and large-scale inlet turbulence on the forward-radiated fan noise measured at a static test facility was investigated. While such inlet disturbances were generated intentionally in an anechoic test chamber, far-field acoustic measurements and inlet flow-field hot-film mappings of a fan rotor were obtained. Experimental results indicate that the acoustic effect of such disturbances appears to be less severe for supersonic than for subsonic tip speeds. Further, a reverse flow that occurs on the exterior cowl in static test facilities appears to be an additional prime candidate for creating inlet disturbances and causing variance between flight and static acoustic data
Analysis of circulating protein aggregates as a route of investigation into neurodegenerative disorders.
Plasma proteome composition reflects the inflammatory and metabolic state of the organism and can be predictive of system-level and organ-specific pathologies. Circulating protein aggregates are enriched with neurofilament heavy chain-axonal proteins involved in brain aggregate formation and recently identified as biomarkers of the fatal neuromuscular disorder amyotrophic lateral sclerosis. Using unbiased proteomic methods, we have fully characterized the content in neuronal proteins of circulating protein aggregates from amyotrophic lateral sclerosis patients and healthy controls, with reference to brain protein aggregate composition. We also investigated circulating protein aggregate protein aggregation propensity, stability to proteolytic digestion and toxicity for neuronal and endothelial cell lines. Circulating protein aggregates separated by ultracentrifugation are visible as electron-dense macromolecular particles appearing as either large globular or as small filamentous formations. Analysis by mass spectrometry revealed that circulating protein aggregates obtained from patients are enriched with proteins involved in the proteasome system, possibly reflecting the underlying basis of dysregulated proteostasis seen in the disease, while those from healthy controls show enrichment of proteins involved in metabolism. Compared to the whole human proteome, proteins within circulating protein aggregates and brain aggregates show distinct chemical features of aggregation propensity, which appear dependent on the tissue or fluid of origin and not on the health status. Neurofilaments' two high-mass isoforms (460 and 268 kDa) showed a strong differential expression in amyotrophic lateral sclerosis compared to healthy control circulating protein aggregates, while aggregated neurofilament heavy chain was also partially resistant to enterokinase proteolysis in patients, demonstrated by immunoreactive bands at 171 and 31 kDa fragments not seen in digested healthy controls samples. Unbiased proteomics revealed that a total of 4973 proteins were commonly detected in circulating protein aggregates and brain, including 24 expressed from genes associated with amyotrophic lateral sclerosis. Interestingly, 285 circulating protein aggregate proteins (5.7%) were regulated (P < 0.05) and are present in biochemical pathways linked to disease pathogenesis and protein aggregation. Biologically, circulating protein aggregates from both patients and healthy controls had a more pronounced effect on the viability of hCMEC/D3 endothelial and PC12 neuronal cells compared to immunoglobulins extracted from the same plasma samples. Furthermore, circulating protein aggregates from patients exerted a more toxic effect than healthy control circulating protein aggregates on both cell lines at lower concentrations (P: 0.03, in both cases). This study demonstrates that circulating protein aggregates are significantly enriched with brain proteins which are representative of amyotrophic lateral sclerosis pathology and a potential source of biomarkers and therapeutic targets for this incurable disorder
Recommended from our members
Trends in Developed Land Cover Adjacent to Habitat for Threatened Salmon in Puget Sound, Washington, U.S.A.
For widely distributed species at risk, such as Pacific salmon (Oncorhynchus spp.), habitat monitoring is both essential and challenging. Only recently have widespread monitoring programs been implemented for salmon habitat in the Pacific Northwest. Remote sensing data, such as Landsat images, are therefore a useful way to evaluate trends prior to the advent of species-specific habitat monitoring programs. We used annual (1986-2008) land cover maps created from Landsat images via automated algorithms (LandTrendr) to evaluate trends in developed (50-100% impervious) land cover in areas adjacent to five types of habitat utilized by Chinook salmon (O. tshawytscha) in the Puget Sound region of Washington State, U.S.A. For the region as a whole, we found significant increases in developed land cover adjacent to each of the habitat types evaluated (nearshore, estuary, mainstem channel, tributary channel, and floodplain), but the increases were small (<1% total increase from 1986 to 2008). For each habitat type, the increasing trend changed during the time series. In nearshore, mainstem, and floodplain areas, the rate of increase in developed land cover slowed in the latter portion of the time series, while the opposite occurred in estuary and tributary areas. Watersheds that were already highly developed in 1986 tended to have higher rates of development than initially less developed watersheds. Overall, our results suggest that developed land cover in areas adjacent to Puget Sound salmon habitat has increased only slightly since 1986 and that the rate of change has slowed near some key habitat types, although this has occurred within the context of a degraded baseline condition
Anti-cancer effects and mechanism of actions of aspirin analogues in the treatment of glioma cancer
INTRODUCTION: In the past 25 years only modest advancements in glioma treatment have been made, with patient prognosis and median survival time following diagnosis only increasing from 3 to 7 months. A substantial body of clinical and preclinical evidence has suggested a role for aspirin in the treatment of cancer with multiple mechanisms of action proposed including COX 2 inhibition, down regulation of EGFR expression, and NF-κB signaling affecting Bcl-2 expression. However, with serious side effects such as stroke and gastrointestinal bleeding, aspirin analogues with improved potency and side effect profiles are being developed. METHOD: Effects on cell viability following 24 hr incubation of four aspirin derivatives (PN508, 517, 526 and 529) were compared to cisplatin, aspirin and di-aspirin in four glioma cell lines (U87 MG, SVG P12, GOS – 3, and 1321N1), using the PrestoBlue assay, establishing IC50 and examining the time course of drug effects. RESULTS: All compounds were found to decrease cell viability in a concentration and time dependant manner. Significantly, the analogue PN517 (IC50 2mM) showed approximately a twofold increase in potency when compared to aspirin (3.7mM) and cisplatin (4.3mM) in U87 cells, with similar increased potency in SVG P12 cells. Other analogues demonstrated similar potency to aspirin and cisplatin. CONCLUSION: These results support the further development and characterization of novel NSAID derivatives for the treatment of glioma
Black Holes as Effective Geometries
Gravitational entropy arises in string theory via coarse graining over an
underlying space of microstates. In this review we would like to address the
question of how the classical black hole geometry itself arises as an effective
or approximate description of a pure state, in a closed string theory, which
semiclassical observers are unable to distinguish from the "naive" geometry. In
cases with enough supersymmetry it has been possible to explicitly construct
these microstates in spacetime, and understand how coarse-graining of
non-singular, horizon-free objects can lead to an effective description as an
extremal black hole. We discuss how these results arise for examples in Type II
string theory on AdS_5 x S^5 and on AdS_3 x S^3 x T^4 that preserve 16 and 8
supercharges respectively. For such a picture of black holes as effective
geometries to extend to cases with finite horizon area the scale of quantum
effects in gravity would have to extend well beyond the vicinity of the
singularities in the effective theory. By studying examples in M-theory on
AdS_3 x S^2 x CY that preserve 4 supersymmetries we show how this can happen.Comment: Review based on lectures of JdB at CERN RTN Winter School and of VB
at PIMS Summer School. 68 pages. Added reference
- …