2,063 research outputs found

    Monte Carlo computation of correlation times of independent relaxation modes at criticality

    Get PDF
    We investigate aspects of universality of Glauber critical dynamics in two dimensions. We compute the critical exponent zz and numerically corroborate its universality for three different models in the static Ising universality class and for five independent relaxation modes. We also present evidence for universality of amplitude ratios, which shows that, as far as dynamic behavior is concerned, each model in a given universality class is characterized by a single non-universal metric factor which determines the overall time scale. This paper also discusses in detail the variational and projection methods that are used to compute relaxation times with high accuracy

    Improved Phenomenological Renormalization Schemes

    Full text link
    An analysis is made of various methods of phenomenological renormalization based on finite-size scaling equations for inverse correlation lengths, the singular part of the free energy density, and their derivatives. The analysis is made using two-dimensional Ising and Potts lattices and the three-dimensional Ising model. Variants of equations for the phenomenological renormalization group are obtained which ensure more rapid convergence than the conventionally used Nightingale phenomenological renormalization scheme. An estimate is obtained for the critical finite-size scaling amplitude of the internal energy in the three-dimensional Ising model. It is shown that the two-dimensional Ising and Potts models contain no finite-size corrections to the internal energy so that the positions of the critical points for these models can be determined exactly from solutions for strips of finite width. It is also found that for the two-dimensional Ising model the scaling finite-size equation for the derivative of the inverse correlation length with respect to temperature gives the exact value of the thermal critical exponent.Comment: 14 pages with 1 figure in late

    Exact critical points of the O(nn) loop model on the martini and the 3-12 lattices

    Full text link
    We derive the exact critical line of the O(nn) loop model on the martini lattice as a function of the loop weight nn.A finite-size scaling analysis based on transfer matrix calculations is also performed.The numerical results coincide with the theoretical predictions with an accuracy up to 9 decimal places. In the limit n→0n\to 0, this gives the exact connective constant ÎŒ=1.7505645579...\mu=1.7505645579... of self-avoiding walks on the martini lattice. Using similar numerical methods, we also study the O(nn) loop model on the 3-12 lattice. We obtain similarly precise agreement with the exact critical points given by Batchelor [J. Stat. Phys. 92, 1203 (1998)].Comment: 4 pages, 3 figures, 2 table

    Desirable Components for a Customized, Home-Based, Digital Care-Management App for Children and Young People With Long-Term, Chronic Conditions: A Qualitative Exploration

    Get PDF
    Background: Mobile apps for mobile phones and tablet devices are widely used by children and young people aged 0-18 years with long-term health conditions, such as chronic kidney disease (CKD), and their healthy peers for social networking or gaming. They are also poised to become a major source of health guidance. However, app development processes that are coproduced, rigorously developed, and evaluated to provide tailored, condition-specific, practical advice on day-to-day care management are seldom systematic or sufficiently described to enable replication. Furthermore, attempts to extrapolate to the real world are hampered by a poor understanding of the effects of key elements of app components. Therefore, effective and cost-effective novel, digital apps that will effectively and safely support care management are critical and timely. To inform development of such an app for children with CKD, a user requirements-gathering exercise was first needed. Objective: To explore the views of children with CKD, their parents, and health care professionals to inform future development of a child-focused, care-management app. Methods: Using age- and developmentally appropriate methods, we interviewed 36 participants: 5-10-year-olds (n=6), 11-14-year-olds (n=6), 15-18-year-olds (n=5), mothers (n=10), fathers (n=2), and health care professionals (n=7). Data were analyzed using Framework Analysis and behavior change theories. Results: Of the 27 interviews, 19 (70%) interviews were individual and 8 (30%) were joint—5 out of 8 (63%) joint interviews were with a child or young person and their parent, 1 out of 8 (13%) were with a child and both parents, and 2 out of 8 (25%) were with 2 professionals. Three key themes emerged to inform development of a software requirement specification for a future home-based, digital care-management app intervention: (1) Gaps in current online information and support, (2) Difficulties experienced by children with a long-term condition, and (3) Suggestions for a digital care-management app. Reported gaps included the fact that current online information is not usually appropriate for children as it is “dry” and “boring,” could be “scary,” and was either hard to understand or not relevant to individuals’ circumstances. For children, searching online was much less accessible than using a professional-endorsed mobile app. Children also reported difficulty explaining their condition to others, maintaining treatment adherence, coping with feeling isolated, and with trying to live a “normal” life. There was recognition that a developmentally appropriate, CKD-specific app could support the process of explaining the condition to healthy peers, reducing isolation, adhering to care-management plans, and living a “normal” life. Participants recommended a range of media and content to include in a tailored, interactive, age- and developmentally appropriate app. For example, the user would be able to enter their age and diagnosis so that only age-appropriate and condition-specific content is displayed. Conclusions: Future development of a digital app that meets the identified information and support needs and preferences of children with CKD will maximize its utility, thereby augmenting CKD caregiving and optimizing outcomes

    Hyperuniversality of Fully Anisotropic Three-Dimensional Ising Model

    Full text link
    For the fully anisotropic simple-cubic Ising lattice, the critical finite-size scaling amplitudes of both the spin-spin and energy-energy inverse correlation lengths and the singular part of the reduced free-energy density are calculated by the transfer-matrix method and a finite-size scaling for cyclic L x L x oo clusters with L=3 and 4. Analysis of the data obtained shows that the ratios and the directional geometric means of above amplitudes are universal.Comment: RevTeX 3.0, 24 pages, 2 figures upon request, accepted for publication in Phys. Rev.

    Conformal invariance and linear defects in the two-dimensional Ising model

    Full text link
    Using conformal invariance, we show that the non-universal exponent eta_0 associated with the decay of correlations along a defect line of modified bonds in the square-lattice Ising model is related to the amplitude A_0=xi_n/n of the correlation length \xi_n(K_c) at the bulk critical coupling K_c, on a strip with width n, periodic boundary conditions and two equidistant defect lines along the strip, through A_0=(\pi\eta_0)^{-1}.Comment: Old paper, for archiving. 5 pages, 4 figures, IOP macro, eps

    Heparanase and COX-2 expression as predictors of lymph node metastasis in large, high-grade breast tumors

    Get PDF
    Background/Aim: Heparanase (HPA) contributes to breast cancer metastasis by facilitating the breakdown of the basement membrane and extracellular matrix. High expression of HPA is thought to be associated with increased nodal involvement and poor survival in patients with breast cancer. Overexpression of cyclooxygenase-2 (COX-2) in breast cancer is associated with indicators of poor prognosis such as lymph node metastasis, poor differentiation, and large tumor size. The underlying mechanism by which HPA and COX-2 overexpression increases the metastatic potential of breast cancer is not fully-understood. To enhance our understanding over these mechanisms, we aimed to investigate the relationship between the size of the tumor and HPA expression, tumor grade as well as lymph node status in patients with breast cancer. Materials and Methods: Immunohistochemical analysis of HPA and COX-2 expression was performed on 246 breast tumor samples. The expression of HPA was correlated with COX-2 expression, tumor grade, lymph node status, oestrogen receptor status. Results: The overexpression of HPA and COX-2 was associated with increased likelihood of lymph node positivity in large, high-grade tumors. High-grade tumors with size greater than 20 mm, that overexpressed HPA, were 4-times more likely to be associated with lymph node involvement (OR 4.71, CI 1.21-18.25). Whereas, tumors greater than 20 mm in size were 5-times more likely to metastasize to the regional lymph nodes, if associated with overexpression of COX-2 (OR 5.5, CI 1.2-24.8). Conclusion: Expression of HPA appears to be a key mechanism by which large, highgrade breast tumors metastasize to regional lymph nodes, while COX-2 overexpression may be an independent predictor of lymph node positivity

    Quantum Speedup by Quantum Annealing

    Full text link
    We study the glued-trees problem of Childs et. al. in the adiabatic model of quantum computing and provide an annealing schedule to solve an oracular problem exponentially faster than classically possible. The Hamiltonians involved in the quantum annealing do not suffer from the so-called sign problem. Unlike the typical scenario, our schedule is efficient even though the minimum energy gap of the Hamiltonians is exponentially small in the problem size. We discuss generalizations based on initial-state randomization to avoid some slowdowns in adiabatic quantum computing due to small gaps.Comment: 7 page

    Semiclassical description of spin ladders

    Full text link
    The Heisenberg spin ladder is studied in the semiclassical limit, via a mapping to the nonlinear σ\sigma model. Different treatments are needed if the inter-chain coupling KK is small, intermediate or large. For intermediate coupling a single nonlinear σ\sigma model is used for the ladder. Its predicts a spin gap for all nonzero values of KK if the sum s+s~s+\tilde s of the spins of the two chains is an integer, and no gap otherwise. For small KK, a better treatment proceeds by coupling two nonlinear sigma models, one for each chain. For integer s=s~s=\tilde s, the saddle-point approximation predicts a sharp drop in the gap as KK increases from zero. A Monte-Carlo simulation of a spin 1 ladder is presented which supports the analytical results.Comment: 8 pages, RevTeX 3.0, 4 PostScript figure

    2024 Wheelchair Compendium of Physical Activities: An Update of Activity Codes and Energy Expenditure Values

    Get PDF
    Purpose: This paper presents an update of the 2011 Wheelchair Compendium of Physical Activities designed for wheelchair users and is referred to as the 2024 Wheelchair Compendium. The Wheelchair Compendium aims to curate existing knowledge of the energy expenditure for wheelchair physical activities (PAs). Methods: A systematic review of the published energy expenditure of PA for wheelchair users was completed between 2011 and May 2023. We added these data to the 2011 Wheelchair Compendium data that was compiled previously in a systematic review through 2011. Results: A total of 47 studies were included, and 124 different wheelchair PA reported energy expenditure values ranging from 0.8 metabolic equivalents for wheelchair users (filing papers, light effort) to 11.8 metabolic equivalents for wheelchair users (Nordic sit skiing). Conclusion: In introducing the updated 2024 Wheelchair Compendium, we hope to bridge the resource gap and challenge the prevailing narratives that inadvertently exclude wheelchair users from physical fitness and health PAs
    • 

    corecore