2,078 research outputs found
Non-Invasive Driver Drowsiness Detection System.
Drowsiness when in command of a vehicle leads to a decline in cognitive performance that affects driver behavior, potentially causing accidents. Drowsiness-related road accidents lead to severe trauma, economic consequences, impact on others, physical injury and/or even death. Real-time and accurate driver drowsiness detection and warnings systems are necessary schemes to reduce tiredness-related driving accident rates. The research presented here aims at the classification of drowsy and non-drowsy driver states based on respiration rate detection by non-invasive, non-touch, impulsive radio ultra-wideband (IR-UWB) radar. Chest movements of 40 subjects were acquired for 5 m using a lab-placed IR-UWB radar system, and respiration per minute was extracted from the resulting signals. A structured dataset was obtained comprising respiration per minute, age and label (drowsy/non-drowsy). Different machine learning models, namely, Support Vector Machine, Decision Tree, Logistic regression, Gradient Boosting Machine, Extra Tree Classifier and Multilayer Perceptron were trained on the dataset, amongst which the Support Vector Machine shows the best accuracy of 87%. This research provides a ground truth for verification and assessment of UWB to be used effectively for driver drowsiness detection based on respiration
A Novel Approach to Railway Track Faults Detection Using Acoustic Analysis.
Regular inspection of railway track health is crucial for maintaining safe and reliable train operations. Factors, such as cracks, ballast issues, rail discontinuity, loose nuts and bolts, burnt wheels, superelevation, and misalignment developed on the rails due to non-maintenance, pre-emptive investigations and delayed detection, pose a grave danger and threats to the safe operation of rail transport. The traditional procedure of manually inspecting the rail track using a railway cart is both inefficient and prone to human error and biases. In a country like Pakistan where train accidents have taken many lives, it is not unusual to automate such approaches to avoid such accidents and save countless lives. This study aims at enhancing the traditional railway cart system to address these issues by introducing an automatic railway track fault detection system using acoustic analysis. In this regard, this study makes two important contributions: data collection on Pakistan railway tracks using acoustic signals and the application of various classification techniques to the collected data. Initially, three types of tracks are considered, including normal track, wheel burnt and superelevation, due to their common occurrence. Several well-known machine learning algorithms are applied such as support vector machines, logistic regression, random forest and decision tree classifier, in addition to deep learning models like multilayer perceptron and convolutional neural networks. Results suggest that acoustic data can help determine the track faults successfully. Results indicate that the best results are obtained by RF and DT with an accuracy of 97%
Essential Right Heart Physiology for the Perioperative Practitioner Poqi IX: Current Perspectives on the Right Heart in the Perioperative Period
As patients continue to live longer from diseases that predispose them to right ventricular (RV) dysfunction or failure, many more patients will require surgery for acute or chronic health issues. Because RV dysfunction results in significant perioperative morbidity if not adequately assessed or managed, understanding appropriate assessment and treatments is important in preventing subsequent morbidity and mortality in the perioperative period. In light of the epidemiology of right heart disease, a working knowledge of right heart anatomy and physiology and an understanding of the implications of right-sided heart function for perioperative care are essential for perioperative practitioners. However, a significant knowledge gap exists concerning this topic. This manuscript is one part of a collection of papers from the PeriOperative Quality Initiative (POQI) IX Conference focusing on Current Perspectives on the Right Heart in the Perioperative Period. This review aims to provide perioperative clinicians with an essential understanding of right heart physiology by answering five key questions on this topic and providing an explanation of seven fundamental concepts concerning right heart physiology
The VLT-FLAMES Tarantula Survey X: Evidence for a bimodal distribution of rotational velocities for the single early B-type stars
Aims: Projected rotational velocities (\vsini) have been estimated for 334
targets in the VLT-FLAMES Tarantula survey that do not manifest significant
radial velocity variations and are not supergiants. They have spectral types
from approximately O9.5 to B3. The estimates have been analysed to infer the
underlying rotational velocity distribution, which is critical for
understanding the evolution of massive stars.
Methods: Projected rotational velocities were deduced from the Fourier
transforms of spectral lines, with upper limits also being obtained from
profile fitting. For the narrower lined stars, metal and non-diffuse helium
lines were adopted, and for the broader lined stars, both non-diffuse and
diffuse helium lines; the estimates obtained using the different sets of lines
are in good agreement. The uncertainty in the mean estimates is typically 4%
for most targets. The iterative deconvolution procedure of Lucy has been used
to deduce the probability density distribution of the rotational velocities.
Results: Projected rotational velocities range up to approximately 450 \kms
and show a bi-modal structure. This is also present in the inferred rotational
velocity distribution with 25% of the sample having \ve100\,\kms
and the high velocity component having \ve\,\kms. There is no
evidence from the spatial and radial velocity distributions of the two
components that they represent either field and cluster populations or
different episodes of star formation. Be-type stars have also been identified.
Conclusions: The bi-modal rotational velocity distribution in our sample
resembles that found for late-B and early-A type stars. While magnetic braking
appears to be a possible mechanism for producing the low-velocity component, we
can not rule out alternative explanations.Comment: to be publisged in A&
Computer tomographic investigation of subcutaneous adipose tissue as an indicator of body composition
<p>Abstract</p> <p>Background</p> <p>Modern computer tomography (CT) equipment can be used to acquire whole-body data from large animals such as pigs in minutes or less. In some circumstances, computer assisted analysis of the resulting image data can identify and measure anatomical features. The thickness of subcutaneous adipose tissue at a specific site measured by ultrasound, is used in the pig industry to assess adiposity and inform management decisions that have an impact on reproduction, food conversion performance and sow longevity. The measurement site, called "P2", is used throughout the industry. We propose that CT can be used to measure subcutaneous adipose tissue thickness and identify novel measurement sites that can be used as predictors of general adiposity.</p> <p>Methods</p> <p>Growing pigs (<it>N </it>= 12), were each CT scanned on three occasions. From these data the total volume of adipose tissue was determined and expressed as a proportion of total volume (fat-index). A computer algorithm was used to determined 10,201 subcutaneous adipose thickness measurements in each pig for each scan. From these data, sites were selected where correlation with fat-index was optimal.</p> <p>Results</p> <p>Image analysis correctly identified the limits of the relevant tissues and automated measurements were successfully generated. Two sites on the animal were identified where there was optimal correlation with fat-index. The first of these was located 4 intercostal spaces cranial to the caudal extremity of the last rib, the other, a further 5 intercostal spaces cranially.</p> <p>Conclusion</p> <p>The approach to image analysis reported permits the creation of various maps showing adipose thickness or correlation of thickness with other variables by location on the surface of the pig. The method identified novel adipose thickness measurement positions that are superior (as predictors of adiposity) to the site which is in current use. A similar approach could be used in other situations to quantify potential links between subcutaneous adiposity and disease or production traits.</p
The VLT-FLAMES Tarantula Survey XIX. B-type Supergiants - Atmospheric parameters and nitrogen abundances to investigate the role of binarity and the width of the main sequence
TLUSTY non-LTE model atmosphere calculations have been used to determine
atmospheric parameters and nitrogen (N) abundances for 34 single and 18 binary
B-type supergiants (BSGs). The effects of flux contribution from an unseen
secondary were considered for the binary sample. We present the first
systematic study of the incidence of binarity for a sample of BSGs across the
theoretical terminal age main sequence (TAMS). To account for the distribution
of effective temperatures of the BSGs it may be necessary to extend the TAMS to
lower temperatures. This is consistent with the derived distribution of mass
discrepancies, projected rotational velocities (vsini) and N abundances,
provided that stars cooler than this temperature are post RSG objects. For the
BSGs in the Tarantula and previous FLAMES surveys, most have small vsini. About
10% have larger vsini (>100 km/s) but surprisingly these show little or no N
enhancement. All the cooler BSGs have low vsini of <70km/s and high N abundance
estimates, implying that either bi-stability braking or evolution on a blue
loop may be important. A lack of cool binaries, possibly reflects the small
sample size. Single star evolutionary models, which include rotation, can
account for the N enhancement in both the single and binary samples. The
detailed distribution of N abundances in the single and binary samples may be
different, possibly reflecting differences in their evolutionary history. The
first comparative study of single and binary BSGs has revealed that the main
sequence may be significantly wider than previously assumed, extending to
Teff=20000K. Some marginal differences in single and binary atmospheric
parameters and abundances have been identified, possibly implying non-standard
evolution for some of the sample. This sample as a whole has implications for
several aspects of our understanding of the evolution of BSGs. Full abstract in
paperComment: 21 pages, 15 figures, 11 table
Evaluation of pyrolysis chars derived from marine macroalgae silage as soil amendments
Sections
PDFPDF
Tools
Share
Abstract
Pyrolysis char residues from ensiled macroalgae were examined to determine their potential as growth promoters on germinating and transplanted seedlings. Macroalgae was harvested in May, July and August from beach collections, containing predominantly Laminaria digitata and Laminaria hyperborea ; naturally seeded mussel lines dominated by Saccharina latissima ; and lines seeded with cultivated L. digitata . Material was ensiled, pressed to pellets and underwent pyrolysis using a thermo‐catalytic reforming (TCR) process, with and without additional steam. The chars generated were then assessed through proximate and ultimate analysis. Seasonal changes had the prevalent impact on char composition, though using mixed beach‐harvested material gave a greater variability in elements than when using the offshore collections. Applying the char at 5% (v/v)/2% (w/w) into germination or seedling soils was universally negative for the plants, inhibiting or delaying all parameters assessed with no clear advantage in harvesting date, species or TCR processing methodology. In germinating lettuce seeds, soil containing the pyrolysis chars caused a longer germination time, poorer germination, fewer true leaves to be produced, a lower average plant health score and a lower final biomass yield. For transplanted ryegrass seedlings, there were lower plant survival rates, with surviving plants producing fewer leaves and tillers, lower biomass yields when cut and less regrowth after cutting. As water from the char‐contained plant pots inhibited the lettuce char control, one further observation was that run‐off water from the pyrolysis char released compounds which detrimentally affected cultivated plant growth. This study clearly shows that pyrolysed macroalgae char does not fit the standard assumption that chars can be used as soil amendments at 2% (w/w) addition levels. As the bioeconomy expands in the future, the end use of residues and wastes from bioprocessing will become a genuine global issue, requiring consideration and demonstration rather than hypothesized use
- …