15 research outputs found

    Microscopic two-nucleon overlaps and knockout reactions from 12^{12}C

    Get PDF
    The nuclear structure dependence of direct reactions that remove a pair of like or unlike nucleons from a fast 12^{12}C projectile beam are considered. Specifically, we study the differences in the two-nucleon correlations present and the predicted removal cross sections when using pp-shell shell-model and multi-ω\hbar\omega no-core shell-model (NCSM) descriptions of the two-nucleon overlaps for the transitions to the mass AA=10 projectile residues. The NCSM calculations use modern chiral two-nucleon and three-nucleon (NN+3N) interactions. The npnp-removal cross sections to low-lying TT=0, 10^{10}B final states are enhanced when using the NCSM two-nucleon amplitudes. The calculated absolute and relative partial cross sections to the low energy 10^{10}B final states show a significant sensitivity to the interactions used, suggesting that assessments of the overlap functions for these transitions and confirmations of their structure could be made using final-state-exclusive measurements of the npnp-removal cross sections and the associated momentum distributions of the forward travelling projectile-like residues.Comment: 9 pages, 7 figure

    Two-nucleon correlation effects in knockout reactions from 12C

    Get PDF
    Reactions that involve the direct and sudden removal of a pair of like or unlike nucleons from a fast projectile beam by a light target nucleus are considered. Specifically, we study the three two-nucleon removal channels from 12^{12}{C} that populate final states in the 10^{10}{Be}, 10^{10}{B} and 10^{10}{C} reaction residues. The calculated two-nucleon removal cross sections and the residue momentum distributions are compared with available high energy data at 250, 1050 and 2010 MeV per nucleon, data that are inclusive with respect to the bound final-states of the residues. The measured npnp-removal cross sections only are significantly greater than the values calculated, suggesting that the reaction mechanism observes enhanced npnp spatial correlations compared to those present in the shell-model wave functions.Comment: 10 pages, 5 figures - Accepted Physical Review

    A study of nuclei of astrophysical interest in the continuum shell model

    Full text link
    We present here the first application of realistic shell model (SM) including coupling between many-particle (quasi-)bound states and the continuum of one-particle scattering states to the spectroscopy of 8B and to the calculation of astrophysical factors in the reaction 7Be(p,gamma)8B.Comment: 9 pages incl. 3 figures, LaTeX with iopart class and epsf. Invited talk at the Int. Workshop on Physics with Radioactive Nuclear Beams, Jan. 12-17, 1998, Puri, India. Shortened version will be published in proceedings to apear as a separate J. Phys. G volum

    Elucidation of the anomalous A = 9 isospin quartet behaviour

    Full text link
    Recent high-precision mass measurements of 9^{9}Li and 9^{9}Be, performed with the TITAN Penning trap at the TRIUMF ISAC facility, are analyzed in light of state-of-the-art shell model calculations. We find an explanation for the anomalous Isobaric Mass Multiplet Equation (IMME) behaviour for the two AA = 9 quartets. The presence of a cubic dd = 6.3(17) keV term for the JπJ^{\pi} = 3/2^{-} quartet and the vanishing cubic term for the excited JπJ^{\pi} = 1/2^{-} multiplet depend upon the presence of a nearby TT = 1/2 state in 9^{9}B and 9^{9}Be that induces isospin mixing. This is contrary to previous hypotheses involving purely Coulomb and charge-dependent effects. TT = 1/2 states have been observed near the calculated energy, above the TT = 3/2 state. However an experimental confirmation of their JπJ^{\pi} is needed.Comment: 5 pages, 2 figure

    Isoscalar g Factors of Even-Even and Odd-Odd Nuclei

    Full text link
    We consider T=0 states in even-even and odd-odd N=Z nuclei. The g factors that emerge are isoscalar. We find that the single j shell model gives simple expressions for these g factors which for even-even nuclei are suprisingly close to the collective values for K=0 bands. The g factors of many 2+ in even-even nuclei and 1+ and 3+ states in odd-odd nuclei have g factors close to 0.5

    Two-body interactions in nuclei

    No full text
    Dissertation (Ph. D.) -- University of Stellenbosch, 1990.Full text to be digitised and attached to bibliographic record
    corecore