13,860 research outputs found

    The twisted fourth moment of the Riemann zeta function

    Full text link
    We compute the asymptotics of the fourth moment of the Riemann zeta function times an arbitrary Dirichlet polynomial of length T1/11ϵT^{{1/11} - \epsilon}Comment: 28 pages. v2: added reference

    Energy Gradients Structure Microbial Communities Across Sediment Horizons in Deep Marine Sediments of the South China Sea

    Get PDF
    The deep marine subsurface is a heterogeneous environment in which the assembly of microbial communities is thought to be controlled by a combination of organic matter deposition, electron acceptor availability, and sedimentology. However, the relative importance of these factors in structuring microbial communities in marine sediments remains unclear. The South China Sea (SCS) experiences significant variability in sedimentation across the basin and features discrete changes in sedimentology as a result of episodic deposition of turbidites and volcanic ashes within lithogenic clays and siliceous or calcareous ooze deposits throughout the basin\u27s history. Deep subsurface microbial communities were recently sampled by the International Ocean Discovery Program (IODP) at three locations in the SCS with sedimentation rates of 5, 12, and 20 cm per thousand years. Here, we used Illumina sequencing of the 16S ribosomal RNA gene to characterize deep subsurface microbial communities from distinct sediment types at these sites. Communities across all sites were dominated by several poorly characterized taxa implicated in organic matter degradation, including Atribacteria, Dehalococcoidia, and Aerophobetes. Sulfate-reducing bacteria comprised only 4% of the community across sulfate-bearing sediments from multiple cores and did not change in abundance in sediments from the methanogenic zone at the site with the lowest sedimentation rate. Microbial communities were significantly structured by sediment age and the availability of sulfate as an electron acceptor in pore waters. However, microbial communities demonstrated no partitioning based on the sediment type they inhabited. These results indicate that microbial communities in the SCS are structured by the availability of electron donors and acceptors rather than sedimentological characteristics

    Catastrophic tibial baseplate failure of a modern cementless total knee arthroplasty implant

    Get PDF
    Tibial baseplate fracture following primary total knee arthroplasty is a rare complication, particularly with modern implants and surgical techniques. This case details the first known report of mid-range follow-up catastrophic failure of a cementless modular, trabecular metal tibial baseplate. This failure highlights the importance of continued follow-up for novel implants, to include cementless knee arthroplasty designs, particularly if new symptoms arise or periarticular bone loss is identified on radiograph. and Knee Surgeons

    Estimating good discrete partitions from observed data: symbolic false nearest neighbors

    Full text link
    A symbolic analysis of observed time series data requires making a discrete partition of a continuous state space containing observations of the dynamics. A particular kind of partition, called ``generating'', preserves all dynamical information of a deterministic map in the symbolic representation, but such partitions are not obvious beyond one dimension, and existing methods to find them require significant knowledge of the dynamical evolution operator or the spectrum of unstable periodic orbits. We introduce a statistic and algorithm to refine empirical partitions for symbolic state reconstruction. This method optimizes an essential property of a generating partition: avoiding topological degeneracies. It requires only the observed time series and is sensible even in the presence of noise when no truly generating partition is possible. Because of its resemblance to a geometrical statistic frequently used for reconstructing valid time-delay embeddings, we call the algorithm ``symbolic false nearest neighbors''

    Slow imbalance relaxation and thermoelectric transport in graphene

    Full text link
    We compute the electronic component of the thermal conductivity (TC) and the thermoelectric power (TEP) of monolayer graphene, within the hydrodynamic regime, taking into account the slow rate of carrier population imbalance relaxation. Interband electron-hole generation and recombination processes are inefficient due to the non-decaying nature of the relativistic energy spectrum. As a result, a population imbalance of the conduction and valence bands is generically induced upon the application of a thermal gradient. We show that the thermoelectric response of a graphene monolayer depends upon the ratio of the sample length to an intrinsic length scale l_Q, set by the imbalance relaxation rate. At the same time, we incorporate the crucial influence of the metallic contacts required for the thermopower measurement (under open circuit boundary conditions), since carrier exchange with the contacts also relaxes the imbalance. These effects are especially pronounced for clean graphene, where the thermoelectric transport is limited exclusively by intercarrier collisions. For specimens shorter than l_Q, the population imbalance extends throughout the sample; the TC and TEP asymptote toward their zero imbalance relaxation limits. In the opposite limit of a graphene slab longer than l_Q, at non-zero doping the TC and TEP approach intrinsic values characteristic of the infinite imbalance relaxation limit. Samples of intermediate (long) length in the doped (undoped) case are predicted to exhibit an inhomogeneous temperature profile, whilst the TC and TEP grow linearly with the system size. In all cases except for the shortest devices, we develop a picture of bulk electron and hole number currents that flow between thermally conductive leads, where steady-state recombination and generation processes relax the accumulating imbalance.Comment: 14 pages, 4 figure
    corecore