742 research outputs found
Neutrino anomalies and large extra dimensions
Theories with large extra dimensions can generate small neutrino masses when
the standard model neutrinos are coupled to singlet fermions propagating in
higher dimensions. The couplings can also generate mass splittings and mixings
among the flavour neutrinos in the brane. We systematically study the minimal
scenario involving only one singlet bulk fermion coupling weakly to the flavour
neutrinos. We explore the neutrino mass structures in the brane that can
potentially account for the atmospheric, solar and LSND anomalies
simultaneously in a natural way. We demonstrate that in the absence of a priori
mixings among the SM neutrinos, it is not possible to reconcile all these
anomalies. The presence of some structure in the mass matrix of the SM
neutrinos can solve this problem. This is exemplified by the Zee model, which
when embedded in extra dimensions in a minimal way can account for all the
neutrino anomalies.Comment: 23 Revtex pages with 2 eps figure
Екологія: наукова сутність, об'єкти досліджень, завдання
Розкрита суть чотирьох основних розділів екології: аутекології, демекології, синекології та екосистемології; описані об’єкти, предмет і завдання
останньої. Визначена роль розумової і виробничої діяльности людства як
зовнішнього збурювального чинника щодо живих систем і як організатора
соціосфери. Обґрунтовані завдання екосистемології у теперішніх геосоціальних умовах.The matters of the four main divisions in ecology, such as autecology, demecology, synecology and ecosystemology have been uncovered. The objects, subjects and assignments of the latter were described too. A part of mankind’s mental and industrial activities, which are outside disturbing factors for biosystems and sociosphere organisers, has been determined. The assignments of ecosystemology within present geosocial condition were well grounded in the article
Improved limits on nuebar emission from mu+ decay
We investigated mu+ decays at rest produced at the ISIS beam stop target.
Lepton flavor (LF) conservation has been tested by searching for \nueb via the
detection reaction p(\nueb,e+)n. No \nueb signal from LF violating mu+ decays
was identified. We extract upper limits of the branching ratio for the LF
violating decay mu+ -> e+ \nueb \nu compared to the Standard Model (SM) mu+ ->
e+ nue numub decay: BR < 0.9(1.7)x10^{-3} (90%CL) depending on the spectral
distribution of \nueb characterized by the Michel parameter rho=0.75 (0.0).
These results improve earlier limits by one order of magnitude and restrict
extensions of the SM in which \nueb emission from mu+ decay is allowed with
considerable strength. The decay \mupdeb as source for the \nueb signal
observed in the LSND experiment can be excluded.Comment: 10 pages, including 1 figure, 1 tabl
Neutrino suppression and extra dimensions: a minimal model
We study flavour neutrinos confined to our 4-dimensional world coupled to one
"bulk" state, i.e. a Kaluza-Klein tower. We discuss the spatial development of
the neutrino disappearance, the possibility of resurgence and the effective
flavour transitions induced in this mechanism. We show that even a simple model
can produce an energy-independent suppression at large distances, and relate
this to experimental data.Comment: 14 pages, 8 figures; the exclusion of sterile neutrinos by
SuperKamiokande is discussed; references adde
Crystal and magnetic structure of LaTiO3 : evidence for non-degenerate -orbitals
The crystal and magnetic structure of LaTiO3 ~ has been studied by x-ray and
neutron diffraction techniques using nearly stoichiometric samples. We find a
strong structural anomaly near the antiferromagnetic ordering, T=146 K. In
addition, the octahedra in LaTiO3 exhibit an intrinsic distortion which implies
a splitting of the t2g-levels. Our results indicate that LaTiO3 should be
considered as a Jahn-Teller system where the structural distortion and the
resulting level splitting are enhanced by the magnetic ordering.Comment: 4 pages 5 figure
S_3-flavour symmetry as realized in lepton flavour violating processes
A variety of lepton flavour violating effects related to the recent discovery
of neutrino oscillations and mixings is here systematically discussed in terms
of an S_3-flavour permutational symmetry. After a brief review of some relevant
results on lepton masses and mixings, that had been derived in the framework of
a Minimal S_3-Invariant Extension of the Standard Model, we derive explicit
analytical expressions for the matrices of the Yukawa couplings and compute the
branching ratios of some selected flavour changing neutral current (FCNC)
processes, as well as, the contribution of the exchange of neutral flavour
changing scalars to the anomaly of the muon's magnetic moment as functions of
the masses of the charged leptons and the neutral Higgs bosons. We find that
the S_3 x Z_2 flavour symmetry and the strong mass hierarchy of the charged
leptons strongly suppress the FCNC processes in the leptonic sector well below
the present experimental upper bounds by many orders of magnitude. The
contribution of FCNC to the anomaly of the muon's magnetic moment is small but
non-negligible.Comment: 23 pages, one figure. To appear in J. Phys A: Mathematical and
Theoretical (SPE QTS5
Neutron production by cosmic-ray muons at shallow depth
The yield of neutrons produced by cosmic ray muons at a shallow depth of 32
meters of water equivalent has been measured. The Palo Verde neutrino detector,
containing 11.3 tons of Gd loaded liquid scintillator and 3.5 tons of acrylic
served as a target. The rate of one and two neutron captures was determined.
Modeling the neutron capture efficiency allowed us to deduce the total yield of
neutrons neutrons per muon
and g/cm. This yield is consistent with previous measurements at similar
depths.Comment: 12 pages, 3 figure
Charged-current neutrino-208Pb reactions
We present theoretical results on the non flux-averaged
and
reaction cross sections, obtained within the charge-exchange
Random-Phase-Approximation. A detailed knowledge of these cross sections is
important in different contexts. In particular, it is necessary to assess the
possibility of using lead as a detector in future experiments on supernova
neutrinos, such as OMNIS and LAND, and eventually detect neutrino oscillation
signals by exploiting the spectroscopic properties of . We discuss
the present status on the theoretical predictions of the reaction cross
sections.Comment: 5 pages, latex, 3 figures. added discussion on present status,
Submitted to Phys.Rev.
Almost Maximal Lepton Mixing with Large T Violation in Neutrino Oscillations and Neutrinoless Double Beta Decay
We point out two simple but instructive possibilities to construct the
charged lepton and neutrino mass matrices, from which the nearly bi-maximal
neutrino mixing with large T violation can naturally emerge. The two lepton
mixing scenarios are compatible very well with current experimental data on
solar and atmospheric neutrino oscillations, and one of them may lead to an
observable T-violating asymmetry between \nu_\mu --> \nu_e and \nu_e -->
\nu_\mu transitions in the long-baseline neutrino oscillation experiments.
Their implications on the neutrinoless double beta decay are also discussed.Comment: RevTex 15 pages (2 PS figures
- …