166 research outputs found

    Enhancing Tc in field-doped Fullerenes by applying uniaxial stress

    Full text link
    Capitalizing on the two-dimensional nature of superconductivity in field-effect doped C60, we show that it should be possible to increase the transition temperature Tc by applying uniaxial stress perpendicular to the gate electrode. This method not only holds the promise of substantially enhancing Tc (by about 30 K per GPa), but also provides a sensitive check of the current understanding of superconductivity in the doped Fullerenes.Comment: 3 pages RevTe

    Structure and Phase Transitions of the 6, 6-Cyclopropane Isomer of C_ {61} H_ {2}

    Get PDF
    We have used x-ray powder diffraction and differential scanning calorimetry to study the crystalline structures and thermal behavior of the 6,6-cyclopropane isomer of C61H2. At room temperature, the C61H2 cyclopropane molecules, like those of the 6,5-annulene isomer and C60O epoxide, are orientationally disordered and crystallize on a face-centered-cubic lattice such that their methylene groups are statistically disordered among the octahedral voids. Unlike 6,5−C61H2 and C60O, the low-temperature structure is not Pa3¯, but rather a low-symmetry orthorhombic lattice in which a≈

    Hausdorff spectrum of harmonic measure

    Get PDF
    For every non-elementary hyperbolic group, we show that for every random walk with finitely supported admissible step distribution, the associated entropy equals the drift times the logarithmic volume growth if and only if the corresponding harmonic measure is comparable with Hausdorfff measure on the boundary. Moreover, we introduce one parameter family of probability measures which interpolates a Patterson-Sullivan measure and the harmonic measure, and establish a formula of Hausdorff spectrum (multifractal spectrum) of the harmonic measure. We also give some finitary versions of dimensional properties of the harmonic measure

    Tuning the stacking behaviour of a 2D covalent organic framework through non-covalent interactions

    Get PDF
    Two-dimensional covalent organic frameworks (COFs) are crystalline porous materials composed of organic building blocks that are connected via covalent bonds within their layers, but through non-covalent interactions between the layers. The exact stacking sequence of the layers is of paramount importance for the optoelectronic, catalytic and sorption properties of these polymeric materials. The weak interlayer interactions lead to a variety of stacking geometries in COFs, which are both hard to characterize and poorly understood due to the low levels of crystallinity. Therefore, detailed insights into the stacking geometry in COFs is still largely elusive. In this work we show that the geometric and electronic features of the COF building blocks can be used to guide the stacking behavior of two related 2D imine COFs (TBI-COF and TTI-COF), which either adopt an averaged "eclipsed'' structure with apparent zero-offset stacking or a unidirectionally slip-stacked structure, respectively. These structural features are confirmed by XRPD and TEM measurements. Based on theoretical calculations, we were able to pinpoint the cause of the uniform slip-stacking geometry and high crystallinity of TTI-COF to the inherent self-complementarity of the building blocks and the resulting donor-acceptor-type stacking of the imine bonds in adjacent layers, which can serve as a more general design principle for the synthesis of highly crystalline COFs

    The possible explanation of electric-field-doped C60 phenomenology in the framework of Eliashberg theory

    Full text link
    In a recent paper (J.H. Schon, Ch. Kloc, R.C. Haddon and B. Batlogg, Nature 408 (2000) 549) a large increase in the superconducting critical temperature was observed in C60 doped with holes by application of a high electric field. We demonstrate that the measured Tc versus doping curves can be explained by solving the (four) s-wave Eliashberg equations in the case of a finite, non-half-filled energy band. In order to reproduce the experimental data, we assume a Coulomb pseudopotential depending on the filling in a very simple and plausible way. Reasonable values of the physical parameters involved are obtained. The application of the same approach to new experimental data (J.H. Schon, Ch. Kloc and B. Batlogg, Science 293 (2001) 2432) on electric field-doped, lattice-expanded C60 single crystals (Tc=117 K in the hole-doped case) gives equally good results and sets a theoretical limit to the linear increase of Tc at the increase of the lattice spacing.Comment: latex2e, 6 pages, 7 figures, 1 table, revised versio

    Structural Insights into Poly(Heptazine Imides): A Light-Storing Carbon Nitride Material for Dark Photocatalysis

    Get PDF
    Solving the structure of carbon nitrides has been a long-standing challenge due to the low crystallinity and complex structures observed within this class of earth-abundant photocatalysts. Herein, we report on two-dimensional layered potassium poly(heptazine imide) (K-PHI) and its proton-exchanged counterpart (H-PHI), obtained by ionothermal synthesis using a molecular precursor route. We present a comprehensive analysis of the in-plane and three-dimensional structure of PHI. Transmission electron microscopy and solid-state NMR spectroscopy, supported by quantum-chemical calculations, suggest a planar, imide-bridged heptazine backbone with trigonal symmetry in both K-PHI and H-PHI, whereas pair distribution function analyses and X-ray powder diffraction using recursive-like simulations of planar defects point to a structure-directing function of the pore content. While the out-of-plane structure of K-PHI exhibits a unidirectional layer offset, mediated by hydrated potassium ions, H-PHI is characterized by a high degree of stacking faults due to the weaker structure directing influence of pore water. Structure–property relationships in PHI reveal that a loss of in-plane coherence, materializing in smaller lateral platelet dimensions and increased terminal cyanamide groups, correlates with improved photocatalytic performance. Size-optimized H-PHI is highly active toward photocatalytic hydrogen evolution, with a rate of 3363 μmol/gh H2 placing it on par with the most active carbon nitrides. K- and H-PHI adopt a uniquely long-lived photoreduced polaronic state in which light-induced electrons are stored for more than 6 h in the dark and released upon addition of a Pt cocatalyst. This work highlights the importance of structure–property relationships in carbon nitrides for the rational design of highly active hydrogen evolution photocatalysts

    KxFe2-ySe2 single crystals: Floating-zone growth, Transport and Structural properties

    Full text link
    Single crystals of superconducting KxFe2-ySe2 have been grown with the optical floating-zone technique under application of 8 bar of argon pressure. We found that large and high quality single crystals with dimensions of ~\varnothing6 \times 10 mm could be obtained at the termination of the grown ingot through quenching, while the remaining part of the ingot decomposed. As-grown single crystals commonly represent an intergrowth of two sets of the c-axis characterized by slightly different lattice constants. Single crystal of K0.80Fe1.81Se2 shows a superconducting transition at Tc = 31.6 K, leading to a near 100% expulsion of the external magnetic field in magnetization measurements. On the other hand, neutron-diffraction data indicate that superconductivity in the sample coexists with a iron-vacancy superstructure and static antiferromagnetic order. The anisotropic ratio of the upper critical field Hc2 for both H//c and H//ab configurations is \sim3.46

    Na9Bi5Os3O24: A Diamagnetic Oxide Featuring a Pronouncedly Jahn–Teller-Compressed Octahedral Coordination of Osmium(VI)

    Full text link
    The Jahn–Teller (JT) theorem constitutes one of the most fundamental concepts in chemistry. In transition-element chemistry, the 3d4 and 3d9 configurations in octahedral complexes are particularly illustrative, where a distortion in local geometry is associated with a reduction of the electronic energy. However, there has been a lasting debate about the fact that the octahedra are found to exclusively elongate. In contrast, for Na9Bi5Os3O24, the octahedron around Os6+(5d2) is heavily compressed, lifting the degeneracy of the t2g set of 5d orbitals such that in the sense of a JT compression a diamagnetic ground state results. This effect is not forced by structural constraints, the structure offers sufficient space for osmium to shift the apical oxygen atoms to a standard distance. The relevance of these findings is far reaching, since they provide new insights in the hierarchy of perturbations defining ground states of open shell electronic systems. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.G.S.T. thank the Cluster of Excellence (EXC 2147) funded by the Deutsche Forschungsgemeinschaft (DFG) for partial support. A.V.U. is grateful to the Quantum project (AAAA‐A18‐118020190095‐4). The work of D.Kh. was funded by the DFG (German Research Foundation)—Project number 277146847—CRC 1238. DFT+U calculations (S.V.S.) were supported by the Russian Science Foundation via RSF‐20‐62‐46047 project. Open access funding enabled and organized by Projekt DEAL. ct.qmat
    corecore