5,731 research outputs found

    Transmission-Line Analysis of Epsilon-Near-Zero (ENZ)-Filled Narrow Channels

    Get PDF
    Following our recent interest in metamaterial-based devices supporting resonant tunneling, energy squeezing and supercoupling through narrow waveguide channels and bends, here we analyze the fundamental physical mechanisms behind this phenomenon using a transmission-line model. These theoretical findings extend our theory, allowing us to take fully into account frequency dispersion and losses and revealing the substantial differences between this unique tunneling phenomenon and higher-frequency Fabry-Perot resonances. Moreover, they represent the foundations for other possibilities to realize tunneling through arbitrary waveguide bends, both in E and H planes of polarization, waveguide connections and sharp abruptions and to obtain analogous effects with geometries arguably simpler to realize.Comment: 35 pages, 9 figure

    Low sidelobe level low-cost earth station antennas for the 12 GHz broadcasting satellite service

    Get PDF
    An experimental investigation of the performance of 1.22 m and 1.83 m diameter paraboloid antennas with an f/D ratio of 0.38 and using a feed developed by Kumar is reported. It is found that sidelobes below 30 dB can be obtained only if the paraboloids are relatively free of surface errors. A theoretical analysis of clam shell distortion shows that this is a limiting factor in achieving low sidelobe levels with many commercially available low cost paraboloids. The use of absorbing pads and small reflecting plates for sidelobe reduction is also considered

    British American Tobacco and the "insidious impact of illicit trade'' in cigarettes across Africa

    Get PDF
    Objectives: To provide an overview of the complicity of British American Tobacco (BAT) in the illicit trade of cigarettes across the African continent in terms of rationale, supply routes and scale.Methods: Analysis of internal BAT documents and industry publications.Results: BAT has relied on illegal channels to supply markets across Africa since the 1980s. Available documents suggest smuggling has been an important component of BAT's market entry strategy in order to gain leverage in negotiating with governments for tax concessions, compete with other transnational tobacco companies, circumvent local import restrictions and unstable political and economic conditions and gain a market presence. BAT worked through distributors and local agents to exploit weak government capacity to gain substantial market share in major countries.Conclusions: Documents demonstrate that the complicity of BAT in cigarette smuggling extends to Africa, which includes many of the poorest countries in the world. This is in direct conflict with offers by the company to contribute to stronger international cooperation to tackle the illicit tobacco trade.</p

    Coaxial prime focus feeds for paraboloidal reflectors

    Get PDF
    A TE11 - TM11 dual mode coaxial feed for use in prime focus paraboloidal antenna systems is investigated. The scattering matrix parameters of the internal bifurcation junction was determined by the residue calculus technique. The scattering parameters and radiation fields of the aperture were found from the Weinstein solution. The optimum modeing ratio for minimum cross-polarization was determined along with the corresponding optimum feed dimensions. A peak cross-polarization level of -58 dB is predicted. The frequency characteristics were also investigated and a bandwidth of 5% is predicted over which the cross-polarization remains below -30 dB, the input VSWR is below 1.15, and the phase error is less than 10 deg. Theoretical radiation patterns and efficiency curves for a paraboloidal reflector illuminated by this feed were computed. The predicted sidelobe level is below -30 dB and aperture efficiencies greater than 70% are possible. Experimental results are also presented that substantiates the theoretical results. In addition, experimental results for a 'short-cup' coaxial feed are given. The report includes extensive design data for the dual-mode feed along with performance curves showing cross-polarization as a function of feed parameters. The feed is useful for low-cost ground based receiving antennas for use in direct television satellite broadcasting service

    Electromagnetic surface states in structured perfect-conductor surfaces

    Full text link
    Surface-bound modes in metamaterials forged by drilling periodic hole arrays in perfect-conductor surfaces are investigated by means of both analytical techniques and rigorous numerical solution of Maxwell's equations. It is shown that these metamaterials cannot be described in general by local, frequency-dependent permittivities and permeabilities for small periods compared to the wavelength, except in certain limiting cases that are discussed in detail. New related metamaterials are shown to exhibit exciting optical properties that are elucidated in the light of our simple analytical approach.Comment: 5 figure

    Self-Organized Criticality Effect on Stability: Magneto-Thermal Oscillations in a Granular YBCO Superconductor

    Full text link
    We show that the self-organized criticality of the Bean's state in each of the grains of a granular superconductor results in magneto-thermal oscillations preceding a series of subsequent flux jumps. We find that the frequency of these oscillations is proportional to the external magnetic field sweep rate and is inversely proportional to the square root of the heat capacity. We demonstrate experimentally and theoretically the universality of this dependence that is mainly influenced by the granularity of the superconductor.Comment: submitted to Physical Review Letters, 4 pages, RevTeX, 4 figures available as uufile

    Landau-Zener-St\"uckelberg Spectroscopy of a Superconducting Flux Qubit

    Full text link
    We proposed a new method to measure the energy spectrum of a superconducting flux qubit. Different from the conventional frequency spectroscopy, a short triangle pulse is used to drive the qubit through the anticrossing and generates Landau-Zener-St\"uckelberg interference patterns, from which the information of the energy spectrum can be extracted. Without installing microwave lines one can simplify the experimental setup and reduce the unwanted effects of noise. Moreover, the method can be applied to other quantum systems, opening the possibility of calibrating and manipulating qubits with linear pulses.Comment: 7 pages, 5 figure

    Nanowire metamaterials with extreme optical anisotropy

    Full text link
    We study perspectives of nanowire metamaterials for negative-refraction waveguides, high-performance polarizers, and polarization-sensitive biosensors. We demonstrate that the behavior of these composites is strongly influenced by the concentration, distribution, and geometry of the nanowires, derive an analytical description of electromagnetism in anisotropic nanowire-based metamaterials, and explore the limitations of our approach via three-dimensional numerical simulations. Finally, we illustrate the developed approach on the examples of nanowire-based high energy-density waveguides and non-magnetic negative index imaging systems with far-field resolution of one-sixth of vacuum wavelength.Comment: Updated version; accepted to Appl.Phys.Let

    Surface-induced near-field scaling in the Knudsen layer of a rarefied gas

    Full text link
    We report on experiments performed within the Knudsen boundary layer of a low-pressure gas. The non-invasive probe we use is a suspended nano-electro-mechanical string (NEMS), which interacts with 4^4He gas at cryogenic temperatures. When the pressure PP is decreased, a reduction of the damping force below molecular friction P\propto P had been first reported in Phys. Rev. Lett. Vol 113, 136101 (2014) and never reproduced since. We demonstrate that this effect is independent of geometry, but dependent on temperature. Within the framework of kinetic theory, this reduction is interpreted as a rarefaction phenomenon, carried through the boundary layer by a deviation from the usual Maxwell-Boltzmann equilibrium distribution induced by surface scattering. Adsorbed atoms are shown to play a key role in the process, which explains why room temperature data fail to reproduce it.Comment: Article plus supplementary materia

    Force dependent fragility in RNA hairpins

    Get PDF
    We apply Kramers theory to investigate the dissociation of multiple bonds under mechanical force and interpret experimental results for the unfolding/refolding force distributions of an RNA hairpin pulled at different loading rates using laser tweezers. We identify two different kinetic regimes depending on the range of forces explored during the unfolding and refolding process. The present approach extends the range of validity of the two-states approximation by providing a theoretical framework to reconstruct free-energy landscapes and identify force-induced structural changes in molecular transition states using single molecule pulling experiments. The method should be applicable to RNA hairpins with multiple kinetic barriers.Comment: Latex file, 4 pages+3 figure
    corecore