6,468 research outputs found
Slow-roll Inflation for Generalized Two-Field Lagrangians
We study the slow-roll regime of two field inflation, in which the two fields
are also coupled through their kinetic terms. Such Lagrangians are motivated by
particle physics and by scalar-tensor theories studied in the Einstein frame.
We compute the power spectra of adiabatic and isocurvature perturbations on
large scales to first order in the slow-roll parameters. We discuss the
relevance of the extra coupling terms for the amplitude and indexes of the
power spectra. Beyond the consistency condition which involves the amplitude of
gravitational waves, additional relations may be found in particular models
based on such Lagrangians: as an example, we find an additional general
consistency condition in implicit form for Brans-Dicke theory in the Einstein
frame.Comment: 17 pages, 1 figure, accepted for publication in Phys. Rev.
Design, realization and test of C-band accelerating structures for the SPARC_LAB linac energy upgrade
Evolution of Large Scale Curvature Fluctuations During the Perturbative Decay of the Inflaton
We study the evolution of cosmological fluctuations during and after
inflation driven by a scalar field coupled to a perfect fluid through afriction
term. During the slow-roll regime for the scalar field, the perfect fluid is
also frozen and isocurvature perturbations are generated. After the end of
inflation, during the decay of the inflaton, we find that a change in the
observationally relevant large scale curvature fluctuations is possible.Comment: 9 pages, 2 figures; v2: version published in PR
Influences of state anxiety on gaze behavior and stepping accuracy in older adults during adaptive locomotion
This article is available open access through the publisher’s website at the link below. Copyright © The Authors 2011.OBJECTIVES: Older adults deemed to be at a high risk of falling transfer their gaze from a stepping target earlier than their low-risk counterparts. The extent of premature gaze transfer increases with task complexity and is associated with a decline in stepping accuracy. This study tests the hypothesis that increased anxiety about upcoming obstacles is associated with (a) premature transfers of gaze toward obstacles (i.e., looking away from a target box prior to completing the step on it in order to fixate future constraints in the walkway) and (b) reduced stepping accuracy on the target in older adults. METHODS: High-risk (9) and low-risk (8) older adult participants walked a 10-m pathway containing a stepping target area followed by various arrangements of obstacles, which varied with each trial. Anxiety, eye movements, and movement kinematics were measured. RESULTS: Progressively increasing task complexity resulted in associated statistically significant increases in measures of anxiety, extent of early gaze transfer, and stepping inaccuracies in the high-risk group. DISCUSSION: These results provide evidence that increased anxiety about environmental hazards is related to suboptimal visual sampling behavior which, in turn, negatively influences stepping performance, potentially contributing to increased falls risk in older adults.Biotechnology and Biological Sciences Research Counci
Study of aerobic granular sludge stability in a continuous-flow membrane bioreactor
A granular continuous-flow membrane bioreactor with a novel hydrodynamic configuration was developed to evaluate the stability of aerobic granular sludge (AGS). Under continuous-flow operation (Period I), AGS rapidly lost their structural integrity resulting in loose and fluffy microbial aggregates in which filamentous bacteria were dominant. The intermittent feeding (Period II) allowed obtaining the succession of feast and famine conditions that favored the increase in AGS stability. Although no further breakage occurred, the formation of new granules was very limited, owing to the absence of the hydraulic selection pressure. These results noted the necessity to ensure, on the one hand the succession of feast/famine conditions, and on the other, the hydraulic selection pressure that allows flocculent sludge washout. This preliminary study shows that the proposed configuration could meet the first aspect; in contrast, biomass selection needs to be improved
Adherence to physical activity guidelines in mid-pregnancy does not reduce sedentary time: an observational study
Protection against pertussis in humans correlates to elevated serum antibodies and memory B cells
Pertussis is a respiratory infection caused by Bordetella pertussis that may be particularly severe and even lethal in the first months of life when infants are still too young to be vaccinated. Adults and adolescents experience mild symptoms and are the source of infection for neonates. Adoptive maternal immunity does not prevent pertussis in the neonate. We compared the specific immune response of mothers of neonates diagnosed with pertussis and mothers of control children. We show that women have pre-existing pertussis-specific antibodies and memory B cells and react against the infection with a recall response increasing the levels specific serum IgG, milk IgA, and the frequency of memory B cells of all isotypes. Thus, the maternal immune system is activated in response to pertussis and effectively prevents the disease indicating that the low levels of pre-formed serum antibodies are insufficient for protection. For this reason, memory B cells play a major role in the adult defense. The results of this study suggest that new strategies for vaccine design should aim at increasing long-lived plasma cells and their antibodies
The spectral element method as an effective tool for solving large scale dynamic soil-structure interaction problems
The spectral element method (SEM) is a powerful numerical technique naturally suited for wave propagation and dynamic soil-structure interaction (DSSI) analyses. A class of SEM has been widely used in the seismological field (local or global seismology) thanks to its capability of providing high accuracy and allowing the implementation of optimized parallel algorithms. We illustrate inthis contribution how the SEM can be effectively used also for the numerical analysis of DSSI problems, with reference to the 3D seismic response of a railway viaduct in Italy. This numerical analysis includes the combined effect of: a) strong lateral variations of soil properties; b) topographic amplification; c) DSSI; d) spatial variation of earthquake ground motion in the structural response. Some hints on the work in progress to effectively handle nonlinear problems with SEM are also given
Effects of macroscopic polarization in III-V nitride multi-quantum-wells
Huge built-in electric fields have been predicted to exist in wurtzite III-V
nitrides thin films and multilayers. Such fields originate from heterointerface
discontinuities of the macroscopic bulk polarization of the nitrides. Here we
discuss the background theory, the role of spontaneous polarization in this
context, and the practical implications of built-in polarization fields in
nitride nanostructures. To support our arguments, we present detailed
self-consistent tight-binding simulations of typical nitride QW structures in
which polarization effects are dominant.Comment: 11 pages, 9 figures, uses revtex/epsf. submitted to PR
- …
