12,564 research outputs found

    The compositional construction of Markov processes II

    Get PDF
    In an earlier paper we introduced a notion of Markov automaton, together with parallel operations which permit the compositional description of Markov processes. We illustrated by showing how to describe a system of n dining philosophers, and we observed that Perron-Frobenius theory yields a proof that the probability of reaching deadlock tends to one as the number of steps goes to infinity. In this paper we add sequential operations to the algebra (and the necessary structure to support them). The extra operations permit the description of hierarchical systems, and ones with evolving geometry

    Low-temperature anomalies of a vapor deposited glass

    Full text link
    We investigate the low temperature properties of two-dimensional Lennard-Jones glass films, prepared in silico both by liquid cooling and by physical vapor deposition. We identify deep in the solid phase a crossover temperature T∗T^*, at which slow dynamics and enhanced heterogeneity emerge. Around T∗T^*, localized defects become visible, leading to vibrational anomalies as compared to standard solids. We find that on average, T∗T^* decreases in samples with lower inherent structure energy, suggesting that such anomalies will be suppressed in ultra-stable glass films, prepared both by very slow liquid cooling and vapor deposition.Comment: 10 pages including appendices, 8 figures. Version accepted for Physical Review Material

    Implementation of optimal phase-covariant cloning machines

    Full text link
    The optimal phase covariant cloning machine (PQCM) broadcasts the information associated to an input qubit into a multi-qubit systems, exploiting a partial a-priori knowledge of the input state. This additional a priori information leads to a higher fidelity than for the universal cloning. The present article first analyzes different experimental schemes to implement the 1->3 PQCM. The method is then generalized to any 1->M machine for odd value of M by a theoretical approach based on the general angular momentum formalism. Finally different experimental schemes based either on linear or non-linear methods and valid for single photon polarization encoded qubits are discussed.Comment: 7 pages, 3 figure

    High concordance between trained nurses and gastroenterologists in evaluating recordings of small bowel video capsule endoscopy (VCE)

    Get PDF
    Background & Aims: The video capsule endoscopy (VCE) is an accurate and validated tool to investigate the entire small bowel mucosa, but VCE recordings interpretation by the gastroenterologist is time-consuming. A pre-reading of VCE recordings by an expert nurse could be accurate and cost saving. We assessed the concordance between nurses and gastroenterologists in detecting lesions on VCE examinations. Methods: This was a prospective study enrolling consecutive patients who had undergone VCE in clinical practice. Two trained nurses and two expert gastroenterologists participated in the study. At VCE pre-reading the nurses selected any abnormalities, saved them as “thumbnails” and classified the detected lesions as a vascular abnormality, ulcerative lesion, polyp, tumor mass, and unclassified lesion. Then, the gastroenterologist evaluated and interpreted the selected lesions and, successively, reviewed the entire video for potential missed lesions. The time for VCE evaluation was recorded. Results: A total of 95 VCE procedures performed on consecutive patients (M/F: 47/48; mean age: 63 ± 12 years, range: 27−86 years) were evaluated. Overall, the nurses detected at least one lesion in 54 (56.8%) patients. There was total agreement between nurses and gastroenterologists, no missing lesions being discovered at a second look of the entire VCE recording by the physician. The pre-reading procedure by nurse allowed a time reduction of medical evaluation from 49 (33-69) to 10 (8-16) minutes (difference:-79.6%). Conclusions: Our data suggest that trained nurses can accurately identify and select relevant lesions in thumbnails that subsequently were faster reviewed by the gastroenterologist for a final diagnosis. This could significantly reduce the cost of VCE procedure

    Multi-path entanglement of two photons

    Full text link
    We present a novel optical device based on an integrated system of micro-lenses and single mode optical fibers. It allows to collect and direct into many modes two photons generated by spontaneous parametric down conversion. By this device multiqubit entangled states and/or multilevel qu-ddit states of two photons, encoded in the longitudinal momentum degree of freedom, are created. The multi-path photon entanglement realized by this device is expected to find important applications in modern quantum information technology.Comment: 4 pages, 3 figures, revtex, revised versio

    Coherent coupling between localised and propagating phonon polaritons

    Full text link
    Following the recent observation of localised phonon polaritons in user-defined silicon carbide nano-resonators, here we demonstrate coherent coupling between those localised modes and propagating phonon polaritons bound to the surface of the nano-resonator's substrate. In order to obtain phase-matching, the nano-resonators have been fabricated to serve the double function of hosting the localised modes, while also acting as grating for the propagating ones. The coherent coupling between long lived, optically accessible localised modes, and low-loss propagative ones, opens the way to the design and realisation of phonon-polariton based quantum circuits

    Very Large Telescope Observations of the peculiar globular cluster NGC6712. Discovery of a UV, H-alpha excess star in the core

    Get PDF
    We present results from multi-band observations in the central region of the cluster NGC6712 with the ESO-Very Large Telescope. Using high resolution images we have identified three UV-excess stars. In particular two of them are within the cluster core, a few arcsec apart: the first object is star "S" which previous studies identified as the best candidate to the optical counterpart to the luminous X-ray source detected in this cluster. The other UV object shows clearcut H-alpha emission and, for this reason, is an additional promising interacting binary candidate (a quiescent LMXB or a CV). The presence of two unrelated interacting binary systems a few arcsec apart in the core of this low-density cluster is somewhat surprising and supports the hypothesis that the (internal) dynamical history of the cluster and/or the (external) interaction with the Galaxy might play a fundamental role in the formation of these peculiar objects.Comment: 15 pages, 3 figures. ApJL in pres

    Future weak lensing constraints in a dark coupled universe

    Get PDF
    Coupled cosmologies can predict values for the cosmological parameters at low redshifts which may differ substantially from the parameters values within non-interacting cosmologies. Therefore, low redshift probes, as the growth of structure and the dark matter distribution via galaxy and weak lensing surveys constitute a unique tool to constrain interacting dark sector models. We focus here on weak lensing forecasts from future Euclid and LSST-like surveys combined with the ongoing Planck cosmic microwave background experiment. We find that these future data could constrain the dimensionless coupling to be smaller than a few ×10−2\times 10^{-2}. The coupling parameter Ο\xi is strongly degenerate with the cold dark matter energy density Ωch2\Omega_{c}h^2 and the Hubble constant H0H_0.These degeneracies may cause important biases in the cosmological parameter values if in the universe there exists an interaction among the dark matter and dark energy sectors.Comment: 8 pages, 6 figure

    Determining the Neutrino Mass Hierarchy with Cosmology

    Full text link
    The combination of current large scale structure and cosmic microwave background (CMB) anisotropies data can place strong constraints on the sum of the neutrino masses. Here we show that future cosmic shear experiments, in combination with CMB constraints, can provide the statistical accuracy required to answer questions about differences in the mass of individual neutrino species. Allowing for the possibility that masses are non-degenerate we combine Fisher matrix forecasts for a weak lensing survey like Euclid with those for the forthcoming Planck experiment. Under the assumption that neutrino mass splitting is described by a normal hierarchy we find that the combination Planck and Euclid will possibly reach enough sensitivity to put a constraint on the mass of a single species. Using a Bayesian evidence calculation we find that such future experiments could provide strong evidence for either a normal or an inverted neutrino hierachy. Finally we show that if a particular neutrino hierachy is assumed then this could bias cosmological parameter constraints, for example the dark energy equation of state parameter, by > 1\sigma, and the sum of masses by 2.3\sigma.Comment: 9 pages, 6 figures, 3 table
    • 

    corecore