40 research outputs found

    Pathogen Proteins Eliciting Antibodies Do Not Share Epitopes with Host Proteins: A Bioinformatics Approach

    Get PDF
    The best way to prevent diseases caused by pathogens is by the use of vaccines. The advent of genomics enables genome-wide searches of new vaccine candidates, called reverse vaccinology. The most common strategy to apply reverse vaccinology is by designing subunit recombinant vaccines, which usually generate an humoral immune response due to B-cell epitopes in proteins. A major problem for this strategy is the identification of protective immunogenic proteins from the surfome of the pathogen. Epitope mimicry may lead to auto-immune phenomena related to several human diseases. A sequence-based computational analysis has been carried out applying the BLASTP algorithm. Therefore, two huge databases have been created, one with the most complete and current linear B-cell epitopes, and the other one with the surface-protein sequences of the main human respiratory bacterial pathogens. We found that none of the 7353 linear B-cell epitopes analysed shares any sequence identity region with human proteins capable of generating antibodies, and that only 1% of the 2175 exposed proteins analysed contain a stretch of shared sequence with the human proteome. These findings suggest the existence of a mechanism to avoid autoimmunity. We also propose a strategy for corroborating or warning about the viability of a protein linear B-cell epitope as a putative vaccine candidate in a reverse vaccinology study; so, epitopes without any sequence identity with human proteins should be very good vaccine candidates, and the other way around

    A Liposome-Based Mycobacterial Vaccine Induces Potent Adult and Neonatal Multifunctional T Cells through the Exquisite Targeting of Dendritic Cells

    Get PDF
    BACKGROUND: In the search for more potent and safer tuberculosis vaccines, CAF01 was identified as a remarkable formulation. Based on cationic liposomes and including a synthetic mycobacterial glycolipid as TLR-independent immunomodulator, it induces strong and protective T helper-1 and T helper-17 adult murine responses to Ag85B-ESAT-6, a major mycobacterial fusion protein. Here, we assessed whether these properties extend to early life and how CAF01 mediates its adjuvant properties in vivo. METHODS/FINDINGS: Following adult or neonatal murine immunization, Ag85B-ESAT-6/CAF01 similarly reduced the post-challenge bacterial growth of M. bovis BCG, whereas no protection was observed using Alum as control. This protection was mediated by the induction of similarly strong Th1 and Th17 responses in both age groups. Multifunctional Th1 cells were already elicited after a single vaccine dose and persisted at high levels for at least 6 months even after neonatal priming. Unexpectedly, this potent adjuvanticity was not mediated by a massive targeting/activation of dendritic cells: in contrast, very few DCs in the draining lymph nodes were bearing the labeled antigen/adjuvant. The increased expression of the CD40 and CD86 activation markers was restricted to the minute portion of adjuvant-bearing DCs. However, vaccine-associated activated DCs were recovered several days after immunization. CONCLUSION: The potent adult and neonatal adjuvanticity of CAF01 is associated in vivo with an exquisite but prolonged DC uptake and activation, fulfilling the preclinical requirements for novel tuberculosis vaccines to be used in early life

    Human and guinea pig immune responses to Legionella pneumophila protein antigens OmpS and Hsp60.

    No full text
    We studied the immune responses of guinea pigs and humans to two Legionella pneumophila antigens. Guinea pigs surviving a lethal intraperitoneal challenge dose of virulent L. pneumophila exhibited strong cutaneous delayed-type hypersensitivity (DTH) reactions to purified OmpS (28-kDa major outer membrane protein) and Hsp60 (heat shock protein or common antigen), while weak DTH reactions were noted for extracellular protease (major secretory protein [MSP] [ProA]) and no reaction was observed with an ovalbumin (OA) control. Lymphocyte proliferation responses (LPRs) were measured for peripheral blood and spleen lymphocytes from guinea pigs surviving sublethal and lethal challenge doses of L. pneumophila. Lymphocytes from uninfected animals showed no proliferation to Hsp60 or OmpS, while lymphocytes from sublethally and lethally challenged animals exhibited strong proliferative responses to Hsp60 and OmpS. Guinea pigs vaccinated with purified OmpS exhibited low antibody titers and strong DTH and LPRs to OmpS, whereas lymphocytes from animals vaccinated with Hsp60 exhibited weak DTH responses and high antibody titers to Hsp60. All guinea pigs immunized with OmpS survived experimental challenge with L. pneumophila (two of two in a pilot study and seven of seven in trial 2) versus zero of seven OA-immunized controls (P = 0.006 by Fisher's exact test). In three vaccine trials in which animals were vaccinated with Hsp60, only 1 guinea pig of 15 survived lethal challenge. Peripheral blood lymphocytes (PBLs) from humans with legionellosis showed stronger LPRs to OmpS than PBLs from humans with no history of legionellosis (P = 0.0002 by Mann-Whitney test). PBLs of humans surviving legionellosis exhibited a lower but highly significant proliferative response to Hsp60 (P < 0.0001 compared with controls by Mann-Whitney test). These studies indicate that OmpS and Hsp60 are important antigens associated with the development of protective cellular immunity. However, as determined in vaccine trial studies in the guinea pig model for legionellosis, the species-specific antigen OmpS proved much more effective than the genus-common Hsp60 antigen
    corecore