2,237 research outputs found

    Performance of the Colorado wind-profiling network, part 1.5A

    Get PDF
    The Wave Propagation Laboratory (WPL) has operated a network of radar wind Profilers in Colorado for about 1 year. The network consists of four VHF (50-MHz) radars and a UHF (915-MHz) radar. The Platteville VHF radar was developed by the Aeronomy Laboratory (AL) and has been operated jointly by WPL and AL for several years. The other radars were installed between February and May 1983. Experiences with these radars and some general aspects of tropospheric wind measurements with Doppler radar are discussed

    Any-order propagation of the nonlinear Schroedinger equation

    Full text link
    We derive an exact propagation scheme for nonlinear Schroedinger equations. This scheme is entirely analogous to the propagation of linear Schroedinger equations. We accomplish this by defining a special operator whose algebraic properties ensure the correct propagation. As applications, we provide a simple proof of a recent conjecture regarding higher-order integrators for the Gross-Pitaevskii equation, extend it to multi-component equations, and to a new class of integrators.Comment: 10 pages, no figures, submitted to Phys. Rev.

    Speed and entropy of an interacting continuous time quantum walk

    Get PDF
    We present some dynamic and entropic considerations about the evolution of a continuous time quantum walk implementing the clock of an autonomous machine. On a simple model, we study in quite explicit terms the Lindblad evolution of the clocked subsystem, relating the evolution of its entropy to the spreading of the wave packet of the clock. We explore possible ways of reducing the generation of entropy in the clocked subsystem, as it amounts to a deficit in the probability of finding the target state of the computation. We are thus lead to examine the benefits of abandoning some classical prejudice about how a clocking mechanism should operate.Comment: 25 pages, 14 figure

    Assessment of the Mobilizable Vector Plasmids pSUP202 and pSUP404.2 as Genetic Tools for the Predatory Bacterium Bdellovibrio bacteriovorus

    Get PDF
    Bdellovibrio and like organisms (BALOs) form the group of predatory bacteria which require Gram-negative bacteria as prey. Genetic studies with Bdellovibrio bacteriovorus can be performed with vectors which are introduced into the predator via conjugation. The usefulness of the two vectors pSUP202 and pSUP404.2 as genetic tools were assessed. Both vectors were transferable into B. bacteriovorus by conjugative matings with an Escherichia coli K12 strain as donor. The transfer frequency was higher for vector pSUP404.2 (approx. 10−1–10−4) as for pSUP202 (approx. 10−5–10−6). Vector pSUP202 with a pMB1 origin is unstable in the predatory bacterium, whereas pSUP404.2 is stably maintained in the absence of selective antibiotics. pSUP404.2 harbors two plasmid replicons, the p15A ori and the RSF1010 replication region The copy number of pSUP404.2 was determined by quantitative PCR in B. bacteriovorus and averages seven copies per genome. pSUP404.2 harbors two resistance genes (chloramphenicol and kanamycin) which can be used for cloning either by selection for transconjugants or by insertional inactivation

    Medium Modifications of Hadron Properties and Partonic Processes

    Full text link
    Chiral symmetry is one of the most fundamental symmetries in QCD. It is closely connected to hadron properties in the nuclear medium via the reduction of the quark condensate , manifesting the partial restoration of chiral symmetry. To better understand this important issue, a number of Jefferson Lab experiments over the past decade have focused on understanding properties of mesons and nucleons in the nuclear medium, often benefiting from the high polarization and luminosity of the CEBAF accelerator. In particular, a novel, accurate, polarization transfer measurement technique revealed for the first time a strong indication that the bound proton electromagnetic form factors in 4He may be modified compared to those in the vacuum. Second, the photoproduction of vector mesons on various nuclei has been measured via their decay to e+e- to study possible in-medium effects on the properties of the rho meson. In this experiment, no significant mass shift and some broadening consistent with expected collisional broadening for the rho meson has been observed, providing tight constraints on model calculations. Finally, processes involving in-medium parton propagation have been studied. The medium modifications of the quark fragmentation functions have been extracted with much higher statistical accuracy than previously possible.Comment: to appear in J. Phys.: Conf. Proc. "New Insights into the Structure of Matter: The First Decade of Science at Jefferson Lab", eds. D. Higinbotham, W. Melnitchouk, A. Thomas; added reference
    corecore