1,832 research outputs found

    The Glue Around Quarks and the Interquark Potential

    Get PDF
    The quarks of quark models cannot be identified with the quarks of the QCD Lagrangian. We review the restrictions that gauge field theories place on any description of physical (colour) charges. A method to construct charged particles is presented. The solutions are applied to a variety of applications. Their Green's functions are shown to be free of infra-red divergences to all orders in perturbation theory. The interquark potential is analysed and it is shown that the interaction responsible for anti-screening results from the force between two separately gauge invariant constituent quarks. A fundamental limit on the applicability of quark models is identified.Comment: 4 pages, LaTeX, talk given at Montpellier meeting QCD9

    Girls and Gangs: A Decade on From the Firmin Report and What Has Changed?

    Get PDF
    Presenting data from the first phase of a U.K.-based 5-year mixed-methods study, we restart a decade-long conversation into Girls and Gangs and Violence Against Women and Girls (VAWG). The relationship between the two is not mutually exclusive and coupled with the recent optics surrounding youth violence and gendered violence, we discuss how the needs of women are being somewhat hindered as a result of U.K. governmental vacillation. We therefore consider the serious impact of VAWG and the concomitancy with youth violence/gangs. By drawing on contemporary feminist criminological theorizing, we aim to galvanize governmental responses to prioritize the needs of women at a time when policymakers are arguably poised to listen

    Quantumness in decoherent quantum walk using measurement-induced disturbance

    Full text link
    The classicalization of a decoherent discrete-time quantum walk on a line or an n-cycle can be demonstrated in various ways that do not necessarily provide a geometry-independent description. For example, the position probability distribution becomes increasingly Gaussian, with a concomitant fall in the standard deviation, in the former case, but not in the latter. As another example, each step of the quantum walk on a line may be subjected to an arbitrary phase gate, without affecting the position probability distribution, no matter whether the walk is noiseless or noisy. This symmetry, which is absent in the case of noiseless cyclic walk, but is restored in the presence of sufficient noise, serves as an indicator of classicalization, but only in the cyclic case. Here we show that the degree of quantum correlations between the coin and position degrees of freedom, quantified by a measure based on the disturbance induced by local measurements (Luo, Phys. Rev. A 77, 022301 (2008)), provides a suitable measure of classicalization across both type of walks. Applying this measure to compare the two walks, we find that cyclic quantum walks tend to classicalize faster than quantum walks on a line because of more efficient phase randomization due to the self-interference of the two counter-rotating waves. We model noise as acting on the coin, and given by the squeezed generalized amplitude damping (SGAD) channel, which generalizes the generalized amplitude damping channel.Comment: 8 pages with 8 figures, Published versio

    Asymptotic Dynamics in Quantum Field Theory

    Get PDF
    A crucial element of scattering theory and the LSZ reduction formula is the assumption that the coupling vanishes at large times. This is known not to hold for the theories of the Standard Model and in general such asymptotic dynamics is not well understood. We give a description of asymptotic dynamics in field theories which incorporates the important features of weak convergence and physical boundary conditions. Applications to theories with three and four point interactions are presented and the results are shown to be completely consistent with the results of perturbation theory.Comment: 18 pages, 3 figure

    Absolute rigidity spectrum of protons and helium nuclei above 10 GV/c

    Get PDF
    Proton and helium nuclei differential spectra were gathered with a balloon borne magnet spectrometer. The data were fitted to the assumption that the differential flux can be represented by a power law in rigidity. In the rigidity range 10 to 25 GV/c the spectral indices were found to be -(2.74 plus or minus 0.04) for protons and -(2.71 plus or minus 0.05) for helium nuclei. A brief discussion is given by systematic errors

    Observation of cosmic ray positrons from 5 to 25 GeV

    Get PDF
    The positron data gathered in conjunction with electron data published elsewhere is reported. The basic recognition scheme was to look for low mass positive particles that cause a cascade in a 7 radiation length shower counter. The mass criteria is imposed by selecting particles that were accompanied by Cherenkov light but whose rigidity was below the proton Cherenkov threshold. Thus the proton Cherenkov threshold represents an upper limit to the range of the experiment

    Section on Prospects for Dark Matter Detection of the White Paper on the Status and Future of Ground-Based TeV Gamma-Ray Astronomy

    Full text link
    This is a report on the findings of the dark matter science working group for the white paper on the status and future of TeV gamma-ray astronomy. The white paper was commissioned by the American Physical Society, and the full white paper can be found on astro-ph (arXiv:0810.0444). This detailed section discusses the prospects for dark matter detection with future gamma-ray experiments, and the complementarity of gamma-ray measurements with other indirect, direct or accelerator-based searches. We conclude that any comprehensive search for dark matter should include gamma-ray observations, both to identify the dark matter particle (through the charac- teristics of the gamma-ray spectrum) and to measure the distribution of dark matter in galactic halos.Comment: Report from the Dark Matter Science Working group of the APS commissioned White paper on ground-based TeV gamma ray astronomy (19 pages, 9 figures

    X-ray variability of AGNs in the soft and the hard X-ray bands

    Full text link
    We investigate the X-ray variability characteristics of hard X-ray selected AGNs (based on Swift/BAT data) in the soft X-ray band using the RXTE/ASM data. The uncertainties involved in the individual dwell measurements of ASM are critically examined and a method is developed to combine a large number of dwells with appropriate error propagation to derive long duration flux measurements (greater than 10 days). We also provide a general prescription to estimate the errors in variability derived from rms values from unequally spaced data. Though the derived variability for individual sources are not of very high significance, we find that, in general, the soft X-ray variability is higher than those in hard X-rays and the variability strengths decrease with energy for the diverse classes of AGN. We also examine the strength of variability as a function of the break time scale in the power density spectrum (derived from the estimated mass and bolometric luminosity of the sources) and find that the data are consistent with the idea of higher variability at time scales longer than the break time scale.Comment: 17 pages, 15 Postscript figures, 3 tables, accepted for publication in Ap
    corecore