3,701 research outputs found

    Semiclassical Expansions, the Strong Quantum Limit, and Duality

    Full text link
    We show how to complement Feynman's exponential of the action so that it exhibits a Z_2 duality symmetry. The latter illustrates a relativity principle for the notion of quantum versus classical.Comment: 5 pages, references adde

    Relativistic magnetohydrodynamics in one dimension

    Full text link
    We derive a number of solution for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: system of highly non-linear, relativistic, time dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.Comment: accepted by Phys. Rev.

    Topological Charge of Noncommutative ADHM Instanton

    Get PDF
    We analytically calculate the topological charge of the noncommutative ADHM U(N) k-instanton using the Corrigan's identity and find that the result is exactly the instanton number k.Comment: 13 pages, LaTeX; typos correcte

    Mixed Hyperbolic - Second-Order Parabolic Formulations of General Relativity

    Full text link
    Two new formulations of general relativity are introduced. The first one is a parabolization of the Arnowitt, Deser, Misner (ADM) formulation and is derived by addition of combinations of the constraints and their derivatives to the right-hand-side of the ADM evolution equations. The desirable property of this modification is that it turns the surface of constraints into a local attractor because the constraint propagation equations become second-order parabolic independently of the gauge conditions employed. This system may be classified as mixed hyperbolic - second-order parabolic. The second formulation is a parabolization of the Kidder, Scheel, Teukolsky formulation and is a manifestly mixed strongly hyperbolic - second-order parabolic set of equations, bearing thus resemblance to the compressible Navier-Stokes equations. As a first test, a stability analysis of flat space is carried out and it is shown that the first modification exponentially damps and smoothes all constraint violating modes. These systems provide a new basis for constructing schemes for long-term and stable numerical integration of the Einstein field equations.Comment: 19 pages, two column, references added, two proofs of well-posedness added, content changed to agree with submitted version to PR

    Generalization of Einstein-Lovelock theory to higher order dilaton gravity

    Full text link
    A higher order theory of dilaton gravity is constructed as a generalization of the Einstein-Lovelock theory of pure gravity. Its Lagrangian contains terms with higher powers of the Riemann tensor and of the first two derivatives of the dilaton. Nevertheless, the resulting equations of motion are quasi-linear in the second derivatives of the metric and of the dilaton. This property is crucial for the existence of brane solutions in the thin wall limit. At each order in derivatives the contribution to the Lagrangian is unique up to an overall normalization. Relations between symmetries of this theory and the O(d,d) symmetry of the string-inspired models are discussed.Comment: 18 pages, references added, version to be publishe

    A Quantum-Gravity Perspective on Semiclassical vs. Strong-Quantum Duality

    Full text link
    It has been argued that, underlying M-theoretic dualities, there should exist a symmetry relating the semiclassical and the strong-quantum regimes of a given action integral. On the other hand, a field-theoretic exchange between long and short distances (similar in nature to the T-duality of strings) has been shown to provide a starting point for quantum gravity, in that this exchange enforces the existence of a fundamental length scale on spacetime. In this letter we prove that the above semiclassical vs. strong-quantum symmetry is equivalent to the exchange of long and short distances. Hence the former symmetry, as much as the latter, also enforces the existence of a length scale. We apply these facts in order to classify all possible duality groups of a given action integral on spacetime, regardless of its specific nature and of its degrees of freedom.Comment: 10 page

    Nodal domains on quantum graphs

    Full text link
    We consider the real eigenfunctions of the Schr\"odinger operator on graphs, and count their nodal domains. The number of nodal domains fluctuates within an interval whose size equals the number of bonds BB. For well connected graphs, with incommensurate bond lengths, the distribution of the number of nodal domains in the interval mentioned above approaches a Gaussian distribution in the limit when the number of vertices is large. The approach to this limit is not simple, and we discuss it in detail. At the same time we define a random wave model for graphs, and compare the predictions of this model with analytic and numerical computations.Comment: 19 pages, uses IOP journal style file

    Gravitational wave generation from bubble collisions in first-order phase transitions: an analytic approach

    Full text link
    Gravitational wave production from bubble collisions was calculated in the early nineties using numerical simulations. In this paper, we present an alternative analytic estimate, relying on a different treatment of stochasticity. In our approach, we provide a model for the bubble velocity power spectrum, suitable for both detonations and deflagrations. From this, we derive the anisotropic stress and analytically solve the gravitational wave equation. We provide analytical formulae for the peak frequency and the shape of the spectrum which we compare with numerical estimates. In contrast to the previous analysis, we do not work in the envelope approximation. This paper focuses on a particular source of gravitational waves from phase transitions. In a companion article, we will add together the different sources of gravitational wave signals from phase transitions: bubble collisions, turbulence and magnetic fields and discuss the prospects for probing the electroweak phase transition at LISA.Comment: 48 pages, 14 figures. v2 (PRD version): calculation refined; plots redone starting from Fig. 4. Factor 2 in GW energy spectrum corrected. Main conclusions unchanged. v3: Note added at the end of paper to comment on the new results of 0901.166

    Back-reaction effects in acoustic black holes

    Full text link
    Acoustic black holes are very interesting non-gravitational objects which can be described by the geometrical formalism of General Relativity. These models can be useful to experimentally test effects otherwise undetectable, as for example the Hawking radiation. The back-reaction effects on the background quantities induced by the analogue Hawking radiation could be the key to indirectly observe it. We briefly show how this analogy works and derive the backreaction equations for the linearized quantum fluctuations in the background of an acoustic black hole. A first order in hbar solution is given in the near horizon region. It indicates that acoustic black holes, unlike Schwarzschild ones, get cooler as they radiate phonons. They show remarkable analogies with near-extremal Reissner-Nordstrom black holes.Comment: 10 pages, 1 figure; Talk given at the conference ``Constrained Dynamics and Quantum Gravity (QG05)", Cala Gonone (Italy), September 200

    A direct proof of Kim's identities

    Full text link
    As a by-product of a finite-size Bethe Ansatz calculation in statistical mechanics, Doochul Kim has established, by an indirect route, three mathematical identities rather similar to the conjugate modulus relations satisfied by the elliptic theta constants. However, they contain factors like 1qn1 - q^{\sqrt{n}} and 1qn21 - q^{n^2}, instead of 1qn1 - q^n. We show here that there is a fourth relation that naturally completes the set, in much the same way that there are four relations for the four elliptic theta functions. We derive all of them directly by proving and using a specialization of Weierstrass' factorization theorem in complex variable theory.Comment: Latex, 6 pages, accepted by J. Physics
    corecore