943 research outputs found

    Modification of the Bloch law in ferromagnetic nanostructures

    Full text link
    The temperature dependence of magnetization in ferromagnetic nanostructures (e.g., nanoparticles or nanoclusters) is usually analyzed by means of an empirical extension of the Bloch law sufficiently flexible for a good fitting to the observed data and indicates a strong softening of magnetic coupling compared to the bulk material. We analytically derive a microscopic generalization of the Bloch law for the Heisenberg spin model which takes into account the effects of size, shape and various surface boundary conditions. The result establishes explicit connection to the microscopic parameters and differs significantly from the existing description. In particular, we show with a specific example that the latter may be misleading and grossly overestimates magnetic softening in nanoparticles. It becomes clear why the usual T3/2T^{3/2} dependence appears to be valid in some nanostructures, while large deviations are a general rule. We demonstrate that combination of geometrical characteristics and coupling to environment can be used to efficiently control magnetization and, in particular, to reach a magnetization higher than in the bulk material.Comment: 7 pages, 4 figure

    Revisiting the luminosity function of single halo white dwarfs

    Get PDF
    White dwarfs are the fossils left by the evolution of low-and intermediate-mass stars, and have very long evolutionary timescales. This allows us to use them to explore the properties of old populations, like the Galactic halo. We present a population synthesis study of the luminosity function of halo white dwarfs, aimed at investigating which information can be derived from the currently available observed data. We employ an up-to-date population synthesis code based on Monte Carlo techniques, that incorporates the most recent and reliable cooling sequences for metal poor progenitors as well as an accurate modeling of the observational biases. We find that because the observed sample of halo white dwarfs is restricted to the brightest stars only the hot branch of the white dwarf luminosity function can be used for such purposes, and that its shape function is almost insensitive to the most relevant inputs, like the adopted cooling sequences, the initial mass function, the density profile of the stellar spheroid, or the adopted fraction of unresolved binaries. Moreover, since the cut-off of the observed luminosity has not been yet determined only lower limits to the age of the halo population can be placed. We conclude that the current observed sample of the halo white dwarf population is still too small to obtain definite conclusions about the properties of the stellar halo, and the recently computed white dwarf cooling sequences which incorporate residual hydrogen burning should be assessed using metal-poor globular clusters.Comment: 9 pages, 9 figures, accepted for publication in A&

    Anomalous bond stretching phonons as a probe of charge fluctuations in perovskites

    Full text link
    Important information on momentum resolved low energy charge response can be extracted from anomalous properties of bond stretching in plane phonons observed in inelastic neutron and X-ray scattering in cuprates and some other perovskites. We discuss a semiphenomenological model based on coupling of phonons to a single charge mode. The phonon dispersion and linewidth allow to locate the energy of the charge excitation in the mid infrared part of the spectrum and to determine some of its characteristics. New experiments on oxygen isotope substitution could allow to achieve a more detailed description. Corresponding relations following from the model can be used for the interpretation of experiments and as test of the model.Comment: presented at the M2S-HTSC-VIII conference in Dresde

    A simulation study on the effect of sodium on grain boundary passivation in CIGS thin-film solar cells

    Get PDF
    3D numerical simulations of CIGS thin-film solar cells with different grain-boundary (GB) characteristics have been carried out in order to investigate the effect of defect properties and band edge shifts at GBs on the cell performance. Simulation results are compared with experimental data taken on cells with and without NaF post deposition treatment. GBs with different energy gaps and defect properties have been analyzed. Simulations support the idea that the detrimental effect of defective GBs on the cell performance might be reduced by a treatment with Na. The results of this study can help with the interpretation of experimental findings

    Kuwait: Fostering Sustainable Investment through Modern Commercial Law Systems

    Get PDF
    The Government of Kuwait (GOK) is now moving decisively to reform its insolvency and creditor/debtor regime (ICR). Stakeholders recognize that Kuwait's ICR system had fallen behind that required for a modern economy. The GOK's effort to establish a modern insolvency and creditor rights system is driven by several considerations: first, consistent with its traditional strengths, Kuwait is seeking to transform itself into a regional financial and trading center, as expressed in the Amiri vision 2030 and the GOK's most-recent five-year development plan. Second, many of the difficulties afflicting the country's investment company sector, which started surfacing in 2008, still await fundamental resolution. Third, development of small and medium enterprises (SMEs) is essential to help the GOK meet its goals of diversifying the sources of income and encouraging young people to work in the private sector, in order to reduce the burden of the public sector. The GOK's reform agenda aspires to world-class standards, balancing international norms with solutions rooted in Kuwait's unique local customs. The consensus among stakeholders is that an effective insolvency regime would benefit the Kuwait economy

    Field Localization and Enhancement of Phase Locked Second and Third Harmonic Generation in Absorbing Semiconductor Cavities

    Full text link
    We predict and experimentally observe the enhancement by three orders of magnitude of phase mismatched second and third harmonic generation in a GaAs cavity at 650nm and 433nm, respectively, well above the absorption edge. Phase locking between the pump and the harmonics changes the effective dispersion of the medium and inhibits absorption. Despite hostile conditions the harmonics become localized inside the cavity leading to relatively large conversion efficiencies. Field localization plays a pivotal role and ushers in a new class of semiconductor-based devices in the visible and UV ranges

    Green's function of a finite chain and the discrete Fourier transform

    Full text link
    A new expression for the Green's function of a finite one-dimensional lattice with nearest neighbor interaction is derived via discrete Fourier transform. Solution of the Heisenberg spin chain with periodic and open boundary conditions is considered as an example. Comparison to Bethe ansatz clarifies the relation between the two approaches.Comment: preprint of the paper published in Int. J. Modern Physics B Vol. 20, No. 5 (2006) 593-60
    • …
    corecore