1,848 research outputs found
Geometrical Hyperbolic Systems for General Relativity and Gauge Theories
The evolution equations of Einstein's theory and of Maxwell's theory---the
latter used as a simple model to illustrate the former--- are written in gauge
covariant first order symmetric hyperbolic form with only physically natural
characteristic directions and speeds for the dynamical variables. Quantities
representing gauge degrees of freedom [the spatial shift vector
and the spatial scalar potential ,
respectively] are not among the dynamical variables: the gauge and the physical
quantities in the evolution equations are effectively decoupled. For example,
the gauge quantities could be obtained as functions of from
subsidiary equations that are not part of the evolution equations. Propagation
of certain (``radiative'') dynamical variables along the physical light cone is
gauge invariant while the remaining dynamical variables are dragged along the
axes orthogonal to the spacelike time slices by the propagating variables. We
obtain these results by taking a further time derivative of the equation
of motion of the canonical momentum, and adding a covariant spatial
derivative of the momentum constraints of general relativity (Lagrange
multiplier ) or of the Gauss's law constraint of electromagnetism
(Lagrange multiplier ). General relativity also requires a harmonic time
slicing condition or a specific generalization of it that brings in the
Hamiltonian constraint when we pass to first order symmetric form. The
dynamically propagating gravity fields straightforwardly determine the
``electric'' or ``tidal'' parts of the Riemann tensor.Comment: 24 pages, latex, no figure
Cosmological spacetimes not covered by a constant mean curvature slicing
We show that there exist maximal globally hyperbolic solutions of the
Einstein-dust equations which admit a constant mean curvature Cauchy surface,
but are not covered by a constant mean curvature foliation.Comment: 11 page
Tetrads in SU(3) X SU(2) X U(1) Yang-Mills geometrodynamics
The relationship between gauge and gravity amounts to understanding
underlying new geometrical local structures. These structures are new tetrads
specially devised for Yang-Mills theories, Abelian and Non-Abelian in
four-dimensional Lorentzian spacetimes. In the present manuscript a new tetrad
is introduced for the Yang-Mills SU(3) X SU(2) X U(1) formulation. These new
tetrads establish a link between local groups of gauge transformations and
local groups of spacetime transformations. New theorems are proved regarding
isomorphisms between local internal SU(3) X SU(2) X U(1) groups and local
tensor products of spacetime LB1 and LB2 groups of transformations. The new
tetrads and the stress-energy tensor allow for the introduction of three new
local gauge invariant objects. Using these new gauge invariant objects and in
addition a new general local duality transformation, a new algorithm for the
gauge invariant diagonalization of the Yang-Mills stress-energy tensor is
developed.Comment: There is a new appendix. The unitary transformations by local SU(2)
subgroup elements of a local group coset representative is proved to be a new
local group coset representative. This proof is relevant to the study of the
memory of the local tetrad SU(3) generated gauge transformations. Therefore,
it is also relevant to the group theorems proved in the paper. arXiv admin
note: substantial text overlap with arXiv:gr-qc/060204
Einstein and Yang-Mills theories in hyperbolic form without gauge-fixing
The evolution of physical and gauge degrees of freedom in the Einstein and
Yang-Mills theories are separated in a gauge-invariant manner. We show that the
equations of motion of these theories can always be written in
flux-conservative first-order symmetric hyperbolic form. This dynamical form is
ideal for global analysis, analytic approximation methods such as
gauge-invariant perturbation theory, and numerical solution.Comment: 12 pages, revtex3.0, no figure
Conformal ``thin sandwich'' data for the initial-value problem of general relativity
The initial-value problem is posed by giving a conformal three-metric on each
of two nearby spacelike hypersurfaces, their proper-time separation up to a
multiplier to be determined, and the mean (extrinsic) curvature of one slice.
The resulting equations have the {\it same} elliptic form as does the
one-hypersurface formulation. The metrical roots of this form are revealed by a
conformal ``thin sandwich'' viewpoint coupled with the transformation
properties of the lapse function.Comment: 7 pages, RevTe
General structure of the solutions of the Hamiltonian constraints of gravity
A general framework for the solutions of the constraints of pure gravity is
constructed. It provides with well defined mathematical criteria to classify
their solutions in four classes. Complete families of solutions are obtained in
some cases. A starting point for the systematic study of the solutions of
Einstein gravity is suggested.Comment: 17 pages, LaTeX, submitted to International J. of Geom. Meth. in
Modern Physics. Added comments in the last sectio
The constraint equations for the Einstein-scalar field system on compact manifolds
We study the constraint equations for the Einstein-scalar field system on
compact manifolds. Using the conformal method we reformulate these equations as
a determined system of nonlinear partial differential equations. By introducing
a new conformal invariant, which is sensitive to the presence of the initial
data for the scalar field, we are able to divide the set of free conformal data
into subclasses depending on the possible signs for the coefficients of terms
in the resulting Einstein-scalar field Lichnerowicz equation. For many of these
subclasses we determine whether or not a solution exists. In contrast to other
well studied field theories, there are certain cases, depending on the mean
curvature and the potential of the scalar field, for which we are unable to
resolve the question of existence of a solution. We consider this system in
such generality so as to include the vacuum constraint equations with an
arbitrary cosmological constant, the Yamabe equation and even (all cases of)
the prescribed scalar curvature problem as special cases.Comment: Minor changes, final version. To appear: Classical and Quantum
Gravit
Asymptotic gluing of asymptotically hyperbolic solutions to the Einstein constraint equations
We show that asymptotically hyperbolic solutions of the Einstein constraint
equations with constant mean curvature can be glued in such a way that their
asymptotic regions are connected.Comment: 37 pages; 2 figure
Hamiltonian Time Evolution for General Relativity
Hamiltonian time evolution in terms of an explicit parameter time is derived
for general relativity, even when the constraints are not satisfied, from the
Arnowitt-Deser-Misner-Teitelboim-Ashtekar action in which the slicing density
is freely specified while the lapse is not.
The constraint ``algebra'' becomes a well-posed evolution system for the
constraints; this system is the twice-contracted Bianchi identity when
. The Hamiltonian constraint is an initial value constraint which
determines and hence , given .Comment: 4 pages, revtex, to appear in Phys. Rev. Let
Proof of the Thin Sandwich Conjecture
We prove that the Thin Sandwich Conjecture in general relativity is valid,
provided that the data satisfy certain geometric
conditions. These conditions define an open set in the class of possible data,
but are not generically satisfied. The implications for the ``superspace''
picture of the Einstein evolution equations are discussed.Comment: 8 page
- …