We study the constraint equations for the Einstein-scalar field system on
compact manifolds. Using the conformal method we reformulate these equations as
a determined system of nonlinear partial differential equations. By introducing
a new conformal invariant, which is sensitive to the presence of the initial
data for the scalar field, we are able to divide the set of free conformal data
into subclasses depending on the possible signs for the coefficients of terms
in the resulting Einstein-scalar field Lichnerowicz equation. For many of these
subclasses we determine whether or not a solution exists. In contrast to other
well studied field theories, there are certain cases, depending on the mean
curvature and the potential of the scalar field, for which we are unable to
resolve the question of existence of a solution. We consider this system in
such generality so as to include the vacuum constraint equations with an
arbitrary cosmological constant, the Yamabe equation and even (all cases of)
the prescribed scalar curvature problem as special cases.Comment: Minor changes, final version. To appear: Classical and Quantum
Gravit