4,507 research outputs found

    A nonparametric empirical Bayes framework for large-scale multiple testing

    Full text link
    We propose a flexible and identifiable version of the two-groups model, motivated by hierarchical Bayes considerations, that features an empirical null and a semiparametric mixture model for the non-null cases. We use a computationally efficient predictive recursion marginal likelihood procedure to estimate the model parameters, even the nonparametric mixing distribution. This leads to a nonparametric empirical Bayes testing procedure, which we call PRtest, based on thresholding the estimated local false discovery rates. Simulations and real-data examples demonstrate that, compared to existing approaches, PRtest's careful handling of the non-null density can give a much better fit in the tails of the mixture distribution which, in turn, can lead to more realistic conclusions.Comment: 18 pages, 4 figures, 3 table

    Full-coverage film cooling heat transfer study: Summary of data for normal-hole injection and 30 deg slant-hole injection

    Get PDF
    Heat transfer to a full coverage film cooled turbulent boundary layer over a flat surface was studied. The surface consisted of a discrete hole test section containing 11 rows of holes spaced 5 diameters apart in a staggered array and an instrumented recovery region. Ten diameter spacing was also studied by plugging appropriate holes. Two test sections were used, one having holes normal to the surface and the other having holes angled 30 deg to the surface in the downstream direction. Stanton number data were obtained both in the full coverage region and in the downstream recovery region for a range of blowing ratios, or mass flux ratios, from 0 to 1.3. Initial conditions at the upstream edge of the blowing region were varied from 500 to 5000 for momentum thickness Reynolds number and from 100 to 1800 for enthalpy thickness Reynolds number. The range of Reynolds numbers based on hole diameter and mainstream velocity was 6000 to 22000. Initial boundary layer thicknesses range from 0.5 to 2.0 hole diameters. Air was used as the working fluid. The data were taken for the secondary injection temperature equal to the wall temperature and also equal to the mainstream temperature. Superposition was then used to obtain Stanton number as a continuous function of the injectant temperature. The heat transfer coefficient was defined on the basis of a mainstream-to-wall temperature difference. This definition permits direct comparison of performance between film cooling and transpiration cooling

    Modeling, Estimation, and Pattern Analysis of Random Texture on 3-D Surfaces

    Get PDF
    To recover 3-D structure from a shaded and textural surface image involving textures, neither the Shape-from-shading nor the Shape-from-texture analysis is enough, because both radiance and texture information coexist within the scene surface. A new 3-D texture model is developed by considering the scene image as the superposition of a smooth shaded image and a random texture image. To describe the random part, the orthographical projection is adapted to take care of the non-isotropic distribution function of the intensity due to the slant and tilt of a 3-D textures surface, and the Fractional Differencing Periodic (FDP) model is chosen to describe the random texture, because this model is able to simultaneously represent the coarseness and the pattern of the 3-D texture surface, and enough flexible to synthesize both long-term and short-term correlation structures of random texture. Since the object is described by the model involving several free parameters and the values of these parameters are determined directly from its projected image, it is possible to extract 3-D information and texture pattern directly from the image without any preprocessing. Thus, the cumulative error obtained from each pre-processing can be minimized. For estimating the parameters, a hybrid method which uses both the least square and the maximum likelihood estimates is applied and the estimation of parameters and the synthesis are done in frequency domain. Among the texture pattern features which can be obtained from a single surface image, Fractal scaling parameter plays a major role for classifying and/or segmenting the different texture patterns tilted and slanted due to the 3-dimensional rotation, because of its rotational and scaling invariant properties. Also, since the Fractal scaling factor represents the coarseness of the surface, each texture pattern has its own Fractal scale value, and particularly at the boundary between the different textures, it has relatively higher value to the one within a same texture. Based on these facts, a new classification method and a segmentation scheme for the 3-D rotated texture patterns are develope

    Magnetic domain wall motion in a nanowire: depinning and creep

    Full text link
    The domain wall motion in a magnetic nanowire is examined theoretically in the regime where the domain wall driving force is weak and its competition against disorders is assisted by thermal agitations. Two types of driving forces are considered; magnetic field and current. While the field induces the domain wall motion through the Zeeman energy, the current induces the domain wall motion by generating the spin transfer torque, of which effects in this regime remain controversial. The spin transfer torque has two mutually orthogonal vector components, the adiabatic spin transfer torque and the nonadiabatic spin transfer torque. We investigate separate effects of the two components on the domain wall depinning rate in one-dimensional systems and on the domain wall creep velocity in two-dimensional systems, both below the Walker breakdown threshold. In addition to the leading order contribution coming from the field and/or the nonadiabatic spin transfer torque, we find that the adiabatic spin transfer torque generates corrections, which can be of relevance for an unambiguous analysis of experimental results. For instance, it is demonstrated that the neglect of the corrections in experimental analysis may lead to incorrect evaluation of the nonadiabaticity parameter. Effects of the Rashba spin-orbit coupling on the domain wall motion are also analyzed.Comment: 14 pages, 3 figure

    Breaking scale invariance from a singular inflaton potential

    Full text link
    In this paper we break the scale invariance of the primordial power spectrum of curvature perturbations of inflation. Introducing a singular behaviour due to spontaneous symmetry breaking in the inflaton potential, we obtain fully analytic expressions of scale dependent oscillation and a modulation in power on small scale in the primordial spectrum. And we give the associated cosmic microwave background and matter power spectra which we can observe now and discuss the signature of the scale dependence. We also address the possibility of whether some inflationary model with featured potential might mimic the predictions of the scale invariant power spectrum. We present some examples which illustrate such degeneracies.Comment: 20 pages, 9 figures; Discussion expanded and references added; Miscellaneous typos correcte

    General Slow-Roll Spectrum for Gravitational Waves

    Full text link
    We derive the power spectrum P_\psi(k) of the gravitational waves produced during general classes of inflation with second order corrections. Using this result, we also derive the spectrum and the spectral index in the standard slow-roll approximation with new higher order corrections.Comment: 8 pages, no figure ; Discussion slightly expanded and minor typos correcte
    corecore