243 research outputs found

    IDeF-X ASIC for Cd(Zn)Te spectro-imaging systems

    Full text link
    Joint progresses in Cd(Zn)Te detectors, microelectronics and interconnection technologies open the way for a new generation of instruments for physics and astrophysics applications in the energy range from 1 to 1000 keV. Even working between -20 and 20 degrees Celsius, these instruments will offer high spatial resolution (pixel size ranging from 300 x 300 square micrometers to few square millimeters), high spectral response and high detection efficiency. To reach these goals, reliable, highly integrated, low noise and low power consumption electronics is mandatory. Our group is currently developing a new ASIC detector front-end named IDeF-X, for modular spectro-imaging system based on the use of Cd(Zn)Te detectors. We present here the first version of IDeF-X which consists in a set of ten low noise charge sensitive preamplifiers (CSA). It has been processed with the standard AMS 0.35 micrometer CMOS technology. The CSA are designed to be DC coupled to detectors having a low dark current at room temperature. The various preamps implemented are optimized for detector capacitances ranging from 0.5 up to 30 pF.Comment: 8 pages, 11 figures, IEEE NSS-MIC conference in Rome 2004, submitted to IEEE TNS, correction in unit of figure

    Hard X-ray polarimetry with Caliste, a high performance CdTe based imaging spectrometer

    Get PDF
    Since the initial exploration of soft gamma-ray sky in the 60's, high-energy celestial sources have been mainly characterized through imaging, spectroscopy and timing analysis. Despite tremendous progress in the field, the radiation mechanisms at work in sources such as neutrons stars and black holes are still unclear. The polarization state of the radiation is an observational parameter which brings key additional information about the physical process. This is why most of the projects for the next generation of space missions covering the tens of keV to the MeV region require a polarization measurement capability. A key element enabling this capability is a detector system allowing the identification and characterization of Compton interactions as they are the main process at play. The hard X-ray imaging spectrometer module, developed in CEA with the generic name of Caliste module, is such a detector. In this paper, we present experimental results for two types of Caliste-256 modules, one based on a CdTe crystal, the other one on a CdZnTe crystal, which have been exposed to linearly polarized beams at the European Synchrotron Radiation Facility. These results, obtained at 200-300 keV, demonstrate their capability to give an accurate determination of the polarization parameters (polarization angle and fraction) of the incoming beam. Applying a selection to our data set, equivalent to select 90 degrees Compton scattered interactions in the detector plane, we find a modulation factor Q of 0.78. The polarization angle and fraction are derived with accuracies of approximately 1 degree and 5%. The modulation factor remains larger than 0.4 when essentially no selection is made at all on the data. These results prove that the Caliste-256 modules have performances allowing them to be excellent candidates as detectors with polarimetric capabilities, in particular for future space missions.Comment: 17 pages, 14 figures, 2 tables in Experimental Astronomy, 201

    The Microchannel X-ray Telescope on Board the SVOM Satellite

    Full text link
    We present the Micro-channel X-ray Telescope (MXT), a new narrow-field (about 1{\deg}) telescope that will be flying on the Sino-French SVOM mission dedicated to Gamma-Ray Burst science, scheduled for launch in 2021. MXT is based on square micro pore optics (MPOs), coupled with a low noise CCD. The optics are based on a "Lobster Eye" design, while the CCD is a focal plane detector similar to the type developed for the seven eROSITA telescopes. MXT is a compact and light (<35 kg) telescope with a 1 m focal length, and it will provide an effective area of about 45 cmsq on axis at 1 keV. The MXT PSF is expected to be better than 4.2 arc min (FWHM) ensuring a localization accuracy of the afterglows of the SVOM GRBs to better than 1 arc min (90\% c.l. with no systematics) provided MXT data are collected within 5 minutes after the trigger. The MXT sensitivity will be adequate to detect the afterglows for almost all the SVOM GRBs as well as to perform observations of non-GRB astrophysical objects. These performances are fully adapted to the SVOM science goals, and prove that small and light telescopes can be used for future small X-ray missions.Comment: 6 pages, 6 figures, proceedings of the conference "Swift: 10 years of Discovery", Rome, December 2-5, 2014. To be published by Po

    Fast, broad-band magnetic resonance spectroscopy with diamond widefield relaxometry

    Get PDF
    We present an alternative to conventional Electron Paramagnetic Resonance spectroscopy equipment. Avoiding the use of bulky magnets and magnetron equipment, we use the photoluminescence of an ensemble of Nitrogen-Vacancy centers at the surface of a diamond. Monitoring their relaxation time (or T1), we detected their cross-relaxation with the compound of interest. In addition, the EPR spectra is encoded through a localized magnetic field gradient. While 12 minutes was necessary to record each data point of the spectrum with previous individual NV center's technics, we are able to reconstruct a full spectrum at once in 3 seconds, over a range from 3 to 11 gauss. In term of sensitivity, only 0.5 microliter of a hexaaquacopper (II) ion solution with 1 micromole per liter concentration was necessary.Comment: Main text (15 pages, 6 Figures) + Supplementary (6 Pages, 7 Figures

    Fast-neutron induced background in LaBr3:Ce detectors

    Full text link
    The response of a scintillation detector with a cylindrical 1.5-inch LaBr3:Ce crystal to incident neutrons has been measured in the energy range En = 2-12 MeV. Neutrons were produced by proton irradiation of a Li target at Ep = 5-14.6 MeV with pulsed proton beams. Using the time-of-flight information between target and detector, energy spectra of the LaBr3:Ce detector resulting from fast neutron interactions have been obtained at 4 different neutron energies. Neutron-induced gamma rays emitted by the LaBr3:Ce crystal were also measured in a nearby Ge detector at the lowest proton beam energy. In addition, we obtained data for neutron irradiation of a large-volume high-purity Ge detector and of a NE-213 liquid scintillator detector, both serving as monitor detectors in the experiment. Monte-Carlo type simulations for neutron interactions in the liquid scintillator, the Ge and LaBr3:Ce crystals have been performed and compared with measured data. Good agreement being obtained with the data, we present the results of simulations to predict the response of LaBr3:Ce detectors for a range of crystal sizes to neutron irradiation in the energy range En = 0.5-10 MeVComment: 28 pages, 10 figures, 4 Table

    Unusual consequences of status epilepticus in Dravet syndrome

    Get PDF
    AbstractAlthough status epilepticus (SE) affects the course of Dravet syndrome (DS), it rarely alters dramatically psychomotor outcome. We report an unusual pattern in 3 patients who following refractory SE lasting respectively 2, 7 and 12h experienced persistent and severe cognitive and motor deterioration. We compared these patients to published data and to personal experience in Necker hospital, to find links between severe outcome and clinical features such as treatment or duration of refractory SE. The key point was that anoxoischemic-like lesions appeared on MRI although cardiovascular function had remained stable. Therefore, neither hemodynamic failure, nor abnormalities of cardiac rhythm could explain the lesions and neurological worsening. For theoretical reasons the responsibility of therapy common for the 3 patients, e.g., barbiturates was suspected

    Quantum monitoring of cellular metabolic activities in single mitochondria

    Get PDF
    Free radicals play a vital role in all kinds of biological processes including immune responses. However, free radicals have short lifetimes and are highly reactive, making them difficult to measure using current methods. Here, we demonstrate that relaxometry measurement, or T1, inherited from the field of diamond magnetometry can be used to detect free radicals in living cells with subcellular resolution. This quantum sensing technique is based on defects in diamond, which convert a magnetic signal into an optical signal, allowing nanoscale magnetic resonance measurements. We functionalized fluorescent nanodiamonds (FNDs) to target single mitochondria within macrophage cells to detect the metabolic activity. In addition, we performed measurements on single isolated mitochondria. We were able to detect free radicals generated by individual mitochondria in either living cells or isolated mitochondria after stimulation or inhibition

    The interaction of fluorescent nanodiamond probes with cellular media

    Get PDF
    Fluorescent nanodiamonds (FNDs) are promising tools to image cells, bioanalytes and physical quantities such as temperature, pressure, and electric or magnetic fields with nanometer resolution. To exploit their potential for intracellular applications, the FNDs have to be brought into contact with cell culture media. The interactions between the medium and the diamonds crucially influence sensitivity as well as the ability to enter cells. The authors demonstrate that certain proteins and salts spontaneously adhere to the FNDs and may cause aggregation. This is a first investigation on the fundamental questions on how (a) FNDs interact with the medium, and (b) which proteins and salts are being attracted. A differentiation between strongly binding and weakly binding proteins is made. Not all proteins participate in the formation of FND aggregates. Surprisingly, some main components in the medium seem to play no role in aggregation. Simple strategies to prevent aggregation are discussed. These include adding the proteins, which are naturally present in the cell culture to the diamonds first and then inserting them in the full medium. Graphical abstractSchematic of the interaction of nanodiamonds with cell culture medium. Certain proteins and salts adhere to the diamond surface and lead to aggregation or to formation of a protein corona
    • …
    corecore