1,656 research outputs found

    Description of a computer program to calculate reacting supersonic internal flow fields with shock waves using viscous characteristics: Program manual and sample calculations

    Get PDF
    A computer program for calculating internal supersonic flow fields with chemical reactions and shock waves typical of supersonic combustion chambers with either wall or mid-stream injectors is described. The usefulness and limitations of the program are indicated. The program manual and listing are presented along with a sample calculation

    A growing gap between the integrated systems on the bridge and the end users : an approach considering safety and risk management

    Get PDF

    Redistribution of phase fluctuations in a periodically driven cuprate superconductor

    Full text link
    We study the thermally fluctuating state of a bi-layer cuprate superconductor under the periodic action of a staggered field oscillating at optical frequencies. This analysis distills essential elements of the recently discovered phenomenon of light enhanced coherence in YBa2_2Cu3_3O6+x_{6+x}, which was achieved by periodically driving infrared active apical oxygen distortions. The effect of a staggered periodic perturbation is studied using a Langevin and Fokker-Planck description of driven, coupled Josephson junctions, which represent two neighboring pairs of layers and their two plasmons. In a toy model including only two junctions, we demonstrate that the external driving leads to a suppression of phase fluctuations of the low-energy plasmon, an effect which is amplified via the resonance of the high energy plasmon. When extending the modeling to the full layers, we find that this reduction becomes far more pronounced, with a striking suppression of the low-energy fluctuations, as visible in the power spectrum. We also find that this effect acts onto the in-plane fluctuations, which are reduced on long length scales. All these findings provide a physical framework to describe light control in cuprates

    Proposed parametric cooling of bilayer cuprate superconductors by terahertz excitation

    Get PDF
    We propose and analyze a scheme for parametrically cooling bilayer cuprates based on the selective driving of a cc-axis vibrational mode. The scheme exploits the vibration as a transducer making the Josephson plasma frequencies time-dependent. We show how modulation at the difference frequency between the intra- and interbilayer plasmon substantially suppresses interbilayer phase fluctuations, responsible for switching cc-axis transport from a superconducting to resistive state. Our calculations indicate that this may provide a viable mechanism for stabilizing non-equilibrium superconductivity even above TcT_c, provided a finite pair density survives between the bilayers out of equilibrium.Comment: 4 pages + 7 page supplementa

    Coherent Modulation of the YBa2Cu3O6+x Atomic Structure by Displacive Stimulated Ionic Raman Scattering

    Full text link
    We discuss the mechanism of coherent phonon generation by Stimulated Ionic Raman Scattering, a process different from conventional excitation with near visible optical pulses. Ionic Raman scattering is driven by anharmonic coupling between a directly excited infrared-active phonon mode and other Raman modes. We experimentally study the response of YBa2Cu3O6+x to the resonant excitation of apical oxygen motions at 20 THz by mid-infrared pulses, which has been shown in the past to enhance the interlayer superconducting coupling. We find coherent oscillations of four totally symmetric (Ag) Raman modes and make a critical assessment of the role of these oscillatory motions in the enhancement of superconductivity.Comment: 12 pages, 4 figure

    On a modified-Lorentz-transformation based gravity model confirming basic GRT experiments

    Full text link
    Implementing Poincar\'e's `geometric conventionalism' a scalar Lorentz-covariant gravity model is obtained based on gravitationally modified Lorentz transformations (or GMLT). The modification essentially consists of an appropriate space-time and momentum-energy scaling ("normalization") relative to a nondynamical flat background geometry according to an isotropic, nonsingular gravitational `affecting' function Phi(r). Elimination of the gravitationally `unaffected' S_0 perspective by local composition of space-time GMLT recovers the local Minkowskian metric and thus preserves the invariance of the locally observed velocity of light. The associated energy-momentum GMLT provides a covariant Hamiltonian description for test particles and photons which, in a static gravitational field configuration, endorses the four `basic' experiments for testing General Relativity Theory: gravitational i) deflection of light, ii) precession of perihelia, iii) delay of radar echo, iv) shift of spectral lines. The model recovers the Lagrangian of the Lorentz-Poincar\'e gravity model by Torgny Sj\"odin and integrates elements of the precursor gravitational theories, with spatially Variable Speed of Light (VSL) by Einstein and Abraham, and gravitationally variable mass by Nordstr\"om.Comment: v1: 14 pages, extended version of conf. paper PIRT VIII, London, 2002. v2: section added on effective tensorial rank, references added, appendix added, WEP issue deleted, abstract and other parts rewritten, same results (to appear in Found. Phys.

    A river model of space

    Full text link
    Within the theory of general relativity gravitational phenomena are usually attributed to the curvature of four-dimensional spacetime. In this context we are often confronted with the question of how the concept of ordinary physical three-dimensional space fits into this picture. In this work we present a simple and intuitive model of space for both the Schwarzschild spacetime and the de Sitter spacetime in which physical space is defined as a specified set of freely moving reference particles. Using a combination of orthonormal basis fields and the usual formalism in a coordinate basis we calculate the physical velocity field of these reference particles. Thus we obtain a vivid description of space in which space behaves like a river flowing radially toward the singularity in the Schwarzschild spacetime and radially toward infinity in the de Sitter spacetime. We also consider the effect of the river of space upon light rays and material particles and show that the river model of space provides an intuitive explanation for the behavior of light and particles at and beyond the event horizons associated with these spacetimes.Comment: 22 pages, 5 figure

    Improved Torsion Pendulum for Ground Testing of LISA Displacement Sensors

    Full text link
    We discuss a new torsion pendulum design for ground testing of prototype LISA (Laser Interferometer Space Antenna) displacement sensors. This new design is directly sensitive to net forces and therefore provides a more representative test of the noisy forces and parasitic stiffnesses acting on the test mass as compared to previous ground-based experiments. We also discuss a specific application to the measurement of thermal gradient effects.Comment: 4 pages 1 figure, to appear in the Proceedings of the 10th Marcel Grossmann Meeting on General Relativit

    Torsion pendulum facility for direct force measurements of LISA GRS related disturbances

    Get PDF
    A four mass torsion pendulum facility for testing of the LISA GRS is under development in Trento. With a LISA-like test mass suspended off-axis with respect to the pendulum fiber, the facility allows for a direct measurement of surface force disturbances arising in the GRS. We present here results with a prototype pendulum integrated with very large-gap sensors, which allows an estimate of the intrinsic pendulum noise floor in the absence of sensor related force noise. The apparatus has shown a torque noise near to its mechanical thermal noise limit, and would allow to place upper limits on GRS related disturbances with a best sensitivity of 300 fN/Hz^(1/2) at 1mHz, a factor 50 from the LISA goal. Also, we discuss the characterization of the gravity gradient noise, one environmental noise source that could limit the apparatus performances, and report on the status of development of the facility.Comment: Submitted to Proceedings of the 6th International LISA Symposium, AIP Conference Proceedings 200

    Dynamical decoherence of the light induced interlayer coupling in YBa2_{2}Cu3_{3}O6+δ_{6+\delta}

    Full text link
    Optical excitation of apical oxygen vibrations in YBa2_{2}Cu3_{3}O6+δ_{6+\delta} has been shown to enhance its c-axis superconducting-phase rigidity, as evidenced by a transient blue shift of the equilibrium inter-bilayer Josephson plasma resonance. Surprisingly, a transient c-axis plasma mode could also be induced above Tc_{c} by the same apical oxygen excitation, suggesting light activated superfluid tunneling throughout the pseudogap phase of YBa2_{2}Cu3_{3}O6+δ_{6+\delta}. However, despite the similarities between the above Tc_{c} transient plasma mode and the equilibrium Josephson plasmon, alternative explanations involving high mobility quasiparticle transport should be considered. Here, we report an extensive study of the relaxation of the light-induced plasmon into the equilibrium incoherent phase. These new experiments allow for a critical assessment of the nature of this mode. We determine that the transient plasma relaxes through a collapse of its coherence length rather than its carrier (or superfluid) density. These observations are not easily reconciled with quasiparticle interlayer transport, and rather support transient superfluid tunneling as the origin of the light-induced interlayer coupling in YBa2_{2}Cu3_{3}O6+δ_{6+\delta}.Comment: 27 pages (17 pages main text, 10 pages supplementary), 5 figures (main text
    • …
    corecore