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Proposed parametric cooling of bilayer cuprate superconductors

by terahertz excitation
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3Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543

(Dated: March 13, 2015)

We propose and analyze a scheme for parametrically cooling bilayer cuprates based on the selective
driving of a c-axis vibrational mode. The scheme exploits the vibration as a transducer making the
Josephson plasma frequencies time-dependent. We show how modulation at the difference frequency
between the intra- and interbilayer plasmon substantially suppresses interbilayer phase fluctuations,
responsible for switching c-axis transport from a superconducting to resistive state. Our calculations
indicate that this may provide a viable mechanism for stabilizing non-equilibrium superconductivity
even above Tc, provided a finite pair density survives between the bilayers out of equilibrium.

PACS numbers: 74.25.N-,74.50.+r,74.72.-h,74.81.Fa

Introduction.—The ability to use light to drive with
precision a single low-energy degree of freedom of a solid
is rapidly becoming an important tool for both basic
research and potential technological applications [1–7].
Much work in this area has been dedicated to the excita-
tion of lattice vibrations, which deform the crystal lattice
when driven to large amplitudes [8]. Often, these vibra-
tional modes lie in the mid-infrared region. The laser
excitation of these modes can be coherent, highly selec-
tive and induce little direct heating, in contrast to near-
visible wavelengths [9–13]. Accordingly, such nonlinear
phononic techniques have been directed toward materi-
als with strong electronic correlations, with the goal to
optically switch their collective properties including su-
perconductivity, ferroelectricity, or colossal magnetore-
sistance [5, 6].

Notably, the application of nonlinear lattice con-
trol in high-Tc superconducting cuprates has lead to
the realisation of light enhanced superconductivity,
demonstrated first by targeting modes which dynami-
cally “unbuckle” the crystallographic structure of the
cuprate La1.675Eu0.2Sr0.125CuO4, tipping the system
from striped to superconducting behaviour [3, 5]. In a
recent experiment, coherent excitation of apical oxygen
distortions in the bilayer cuprate YBa2Cu3O6+d (YBCO)
was shown to induce a transient phase which exhibited
superconducting fluctuations at temperatures up to 300K
[6, 7]. In these experiments, the disruption of a compet-
ing order cannot fully explain the extraordinary temper-
ature scale of the effect, and other phenomena related
to the nature of the dynamically driven state should be
considered. Consequently, here we explore the proper-
ties of bilayer cuprates under periodic driving, which in
other materials systems has been shown to give rise to a
renormalized electronic structure [14].

While the physics of high-Tc superconductors is not
fully understood it is generally considered that their
properties are determined by the doped copper-oxide

Figure 1. (a) A schematic of a bilayer cuprate such as YBCO
composed of Josephson junctions each with a phase differ-
ence φj and alternating interbilayer (low) ̟l and intrabilayer
(high) ̟h plasma frequencies. (b) Parametric cooling scheme
where the coupling between the low and high frequency nor-
mal modes ωl and ωh are modulated. Tuning the modulation
to ωd = 1

2
(ωh − ωl) THz cools the low frequency mode by

up-converting fluctuations to the high frequency one.

planes [15–19]. As these planes are weakly coupled
through insulating layers in the c-axis, the low-energy c-
axis electrodynamics of cuprates can often be adequately
described as a stack of intrinsic Josephson junctions –
making them potentially compact sources of coherent
continuous-wave THz frequency radiation [20–22]. Ow-
ing to the relatively small c-axis phase stiffness and poor
screening phase fluctuations in the copper oxide planes
are likely to play a significant role in determining the crit-
ical temperature Tc [23, 24]. In this Letter we propose a
cooling scheme for bilayer cuprates, similar to the laser
cooling of solids via anti-Stokes fluorescence [25], but
specifically targeting the crucial order-parameter phase.

Cooling of phase fluctuations by driving has been
demonstrated in a BCS superconductor using microwave
frequency sideband techniques, leading to an increase in
the critical current Ic for a single Josephson junction [26].
Bilayer cuprates shown schematically in Fig. 1(a), are
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composed of unit cells with two junctions whose insula-
tors alternate between thick interbilayers and thin intra-
bilayers. Typically they have low (l) and high (h) Joseph-
son plasma normal modes in the region ωl ≈ 2π× 1 THz
and ωh ≈ 2π × 10 THz, respectively. Our key idea
is to use the selective driving of a c-axis vibrational
mode as a transducer to modulate plasma frequencies
in time. Although this driving differs from that used to
laser cool many-body systems of atoms [27–29], ions [30]
and optomechanical oscillators [31], the resulting effect
is analogous. Given a temperature ~ωl < kBT < ~ωh,
parametric modulation [32] of the bilayer structure can
cool by up-converting energy from the thermally popu-
lated interbilayer plasmon modes – responsible for phase
fluctuations – to the intrabilayer plasmon modes, see
Fig. 1(b). We make testable quantitative predictions
on the efficiency of cooling and the resulting elevations
in Ic. Importantly we find that optimal suppression of
phase fluctuations occurs for modulation at the frequency
difference of the plasmon modes. While the theory dis-
cussed here is inspired by the experiments reported in
Refs. [6, 7], optimal conditions were not met in these ex-
periments so the theory outlined may or may not explain
those observations.

Model.—The c-axis electrodynamics of cuprate materi-
als are commonly modeled as alternating stacks of super-
conducting and insulating layers, with the Josephson ef-
fect and quasiparticle tunnelling providing coupling along
the c-axis [20, 33]. The application of Maxwell’s equa-
tions, augmented by the Josephson relations, yields a
model in which there is both inductive and capacitive
coupling between the phases of each intrinsic junction
[34]. To simplify our treatment, we consider a suffi-
ciently small crystal in the a and b dimensions (< 100 µm
for many cuprates) such that plasmon modes with finite
quasi-momentum in the ab plane are energetically prohib-
ited. Consequently the spatial dependence of the phases
can be neglected, reducing the system to a stack of short
junctions, similar to those fabricated in heterostructures,
with layer charging providing the dominant coupling [34].

In addition to the Josephson dynamics there are also
phonon modes spanning the THz range [35–38], many
of which describe c-axis vibrations within the insulating
layers [39]. The direct coupling of an infrared active vi-
brational coordinate q to the Josephson plasma frequen-
cies is central to the physics of this work. Such a cou-
pling, which will be q2 due to symmetry, might arise in
numerous ways. For example, the motion of apical oxy-
gens may modulate superfluid density and the plasma
frequency. Alternatively, lattice vibrations may be mod-
eled as a time-dependent modulation of the capacitance
of the insulating layers, equivalent to a χ(3) optical non-
linearity [40]. Either type of modulation results in the
same general effect, and for concreteness we focus on the
latter mechanism [41]. This is equivalent to the insulat-
ing layer I having an effective time-dependent relative
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Figure 2. Parametric cooling in a two-junction unit cell with
(undriven) normal modes ωl = 2π×1 THz, ωh = 2π×10 THz,
γl = 0.19 THz, γh = 3.63 THz, α = 1, ηl = 0 and
ηh = 0.1. (a) Phase and conjugate momentum quadratures
of the inter- and intrabilayer modes. Before t = 0 (indicated)
Tinitial/T0 = 0.1, then parametric driving is applied, after
which fluctuations on both quadratures of the inter- (intra-)
bilayer mode are cooled to 0.6Tinitial (heated to 1.2Tinitial).
Analytic predictions of steady state (dotted line) and asymp-
totic cooling rate (dashed line) are also shown. (b) Cool-
ing/heating sidebands of the interbilayer mode as the driving
frequency ωd is varied.

permittivity ǫI(t) modulated at twice the driving fre-
quency ωd, along with off-resonant harmonics which we
neglect. In the Supplemental Material [41] we show that
the Josephson phase dynamics is described by a modified
Koyama-Tachiki model [34],

∂2
t φI = −α̟2

I−1 sin(φI−1)+[2α+ 1 + ηI(t)]̟
2
I sin(φI)

− α̟2
I+1 sin(φI+1), (1)

where φI is the gauge-invariant phase difference across
the Ith insulating layer, ̟I = c/

√
ǫIλc is the layers’ al-

ternating plasma frequency given by the static permittiv-
ity ǫI , the superconducting c-axis penetration depth λc

and the speed of light in vacuum c. The capacitive cou-
pling between junctions is quantified by the parameter α
which takes values in the range 0.1–5 for common high-Tc

superconductors [42, 43]. The relative driving strength is
ηI(t) = (2α+1)ΛI [ǫI/ǫI(t)−1] = ηI sin

2(ωdt), where the
factor ΛI < 1 accounts for the enlarged effective thickness
of a layer due to λc [41]. The driving therefore modulates
the bare plasma frequency ̟I . An alternative approach,
making use of the Lawrence-Doniach model, yields an
identical equation of motion [20, 44].
Two-junction unit cell.—To examine the phase dynam-

ics of a unit cell we linearize Eq. (1) and move to the
normal mode frame of Eq. (1) with ηI(t) replaced by its
time-average 1

2ηI . We adopt a classical Langevin frame-
work for describing the noise ξl,h(t) and damping γl,h
caused e.g. by long-wavelength phonons and incoherent
quasi-particle currents. This gives

∂2
t ϕl − γl∂tϕl + ω2

l (t)ϕl +∆h(t)ϕh = ξl(t),

∂2
t ϕh − γh∂tϕh + ω2

h(t)ϕh +∆l(t)ϕl = ξh(t),
(2)
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where ϕl,h are the normal mode phase coordinates. Im-
portantly the driving introduces a time-dependent off-
diagonal coupling ∆l,h(t) = ∆l,h cos(2ωdt), where ∆l =
− 1

2Θ(α)ηh̟
2
l , using Θ(α) = α2/(2α + 1)2, and ∆h =

− 1
2ηh̟

2
h to lowest order in r = ̟l/̟h. Similarly the

driving also induces a modulation of the normal mode
frequencies ω2

l,h(t) = ω2
l,h − 1

2A
2
l,h cos(2ωdt), with A2

l =

[ηl + Θ(α)ηh]̟
2
l and A2

h = ηh̟
2
h. The quadratic na-

ture of the driving shifts the normal mode frequencies
ωl,h, in line with experimental observations [6, 7], as ex-
plicitly shown in the Supplemental Material [41]. The
noise ξl,h(t) is approximated as independent, white and
Gaussian, 〈ξl,h(t)ξl,h(t′)〉 = Γl,hδ(t − t′) and is related
to the damping by the fluctuation-dissipation theorem
as Γl = 2γlω

2
l (T/T0) and Γh = 2γhω

2
l (ωl/ωh)

2(T/T0),
where T0 is a system dependent temperature scale set by
the capacitive energy associated to the mode ϕl. In the
absence of driving the damping and noise will thermalize
the system at a temperature T . In contrast to well iso-
lated quantum optical/atomic systems, their continued
presence during driving accounts for persistent reheating
expected in a solid-state system.
We integrate the stochastic differential equations

Eq. (2) with a quasi-symplectic velocity Verlet propaga-
tor [45]. In Fig. 2 we report results for a representative
set of relevant parameters for bilayer cuprates when driv-
ing at the difference frequency ωd = 1

2 (ωh − ωl). Since
the intrabilayer junction is typically more highly damped
we have taken γh > γl. As shown in Fig. 2(a), once the
driving is switched on the phase fluctuations of the inter-
bilayer mode ϕl are strongly suppressed. Up-conversion
correspondingly causes fluctuations to increase on the in-
trabilayer mode ϕh, however its fluctuations remain small
even in the driven steady state. Number fluctuations (not
shown) for the two modes behave similarly. Although the
resulting steady state is non-thermal the level of fluctu-
ations is consistent with ϕl being substantially cooled,
and ϕh being heated. The ωd dependence of the effect
is shown in Fig. 2(b) where a cooling (red) and heating
(blue) sidebands are observed at ωd = 1

2 (ωh − ωl) and
ωd = 1

2 (ωh + ωl), respectively.
Parametric cooling.—We estimate the final tempera-

ture and cooling rate by neglecting the modulation of
the normal mode frequencies ωm(t), and retaining only
the modulation of the couplings ∆m(t). The resulting
model is an effective coupled-oscillator Hamiltonian, as
depicted in Fig. 1(b)

H =
p2l
2∆l

+
p2h
2∆h

+ 1
2∆lω

2
l ϕ

2
l +

1
2∆hω

2
hϕ

2
h

+ cos(2ωdt)∆l∆hϕlϕh, (3)

where pl,h is the conjugate momentum to ϕl,h. Ap-
plying the rotating wave approximation and transform-
ing to the frame rotating with the coupling reveals that
ωd = 1

2 (ωh − ωl) modulation induces resonant exchange
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Figure 3. (a) Reduction of ϕl,i fluctuations for a 100-junction
stack over time, at T/Tc ≈ 0.7. A selection of 10 modes
have been displayed across the interbilayer band as shown in
the inset. (b) In the steady-state for relative fluctuations for
each mode in the interbilayer band is plotted for a selection of
ωd. (c) A contour plot of the 〈sin2 ϕl,i〉/〈sin

2 ϕl,i〉0 averaged
across the interbilayer band sweeping over the damping γl and
capacitive coupling α. Here we have taken γh = 0.1min(ωh,i),
min(ωh,i)/min(ωl,i) = 10. For each value of α, we drive at a
frequency targeting the bottom of the l band.

energy between the oscillators [41]. Since both oscil-
lators are coupled to the same thermal reservoir up-
conversion of energy from ϕl to ϕh is the dominant
process. At the temperatures of interest the high fre-
quency bath modes thermalising ϕh are effectively un-
occupied, so excess upconverted energy is dissipated.
This leads to cooling controlled by the normalized cou-
pling κ2

0 = (∆h∆l)/(ωlωh) = 1
4 (η

2
hω

2
h)g(α) r + O(r3),

with g(α) = Θ(α)/
√
3α2 + 4α+ 1, and is maximized at

α = α0 ≈ 1.07, where g(α0) ≈ 0.04. Note that κ0 de-
pends only on ηh to leading order in r, because the ϕh

mode is more massive by a ratio (ωh/ωl)
2, so modulation

of the intrabilayer insulator is predicted to be most effec-
tive. In the Supplemental Material [41] we show that the
asymptotic cooling rate is γdr = γl+κ2

0/(γh−γl)+O(κ3
0),

and the steady state fluctuations for the interbilayer
mode are [32]

〈ϕ2
l 〉/〈ϕ2

l 〉0 = 1− S(1 − ωl/ωh), (4)

where the scale factor 0 ≤ S ≤ 1 is given by S = ζ/γlχ,
with ζ = κ2

0(γl + γh)/[∆ω2 + (γl + γh)
2], χ = 1 + ζ(γl +

γh)/γlγh, and ∆ω = 2ωd − (ωh − ωl). Note that S = 0,
indicating no cooling, if either γh = 0 or κ0 = 0, while for
an undamped interbilayer mode γl = 0 with γh, κ0 > 0,
we have S = 1 giving the maximum suppression of fluc-
tuations. With increasing γl > 0, S decreases monoton-
ically implying the interbilayer should be underdamped,
and S displays the expected resonance around ∆ω = 0.
The predictions of this analysis are included in Fig. 2(a),
and agree with the numerical solution to within a few
percent over a wide parameter regime. Moreover, in the
Supplemental Material [41] we show that the neglect of
quantum fluctuations in either plasmon mode does not
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Figure 4. (a) Q-Q plot of switching current distributions for
driving strengths ηh = 0 → 0.1, at T/Tc ≈ 0.7. Thermal
curves are relative to this temperature. The dashed line indi-
cates the initial thermal distribution. (b) Numerically com-
puted CDF of switching current at α = 1 with a sweep time
∆t = 1 ns. Solid lines are the driven stack with different
driving strengths as in (a) while the dotted lines correspond
to thermal benchmarks.

affect the validity of our approach.

Cooling a stack of junctions.—We now turn to the
main result of this Letter and consider the full nonlin-
ear dynamics of a stack of 100 junctions described by
Eq. (1) using the classical Langevin treatment outlined.
As shown in Fig. 3(a)(inset) the linearized normal modes
of the stack now form bands, ϕl,i and ϕh,i, of low and
high frequency plasmons which we take as being uni-
formly damped at rates γl and γh, respectively. The
c-axis critical temperature Tc of the stack was determin-
ing by locating when spontaneous thermal phase slipping
first induces a resistive state under negligible bias [41]. In
Fig. 3(a) we show the fluctuations of the modes ϕl,i for
the case where the driving ωd is tuned to half the dif-
ference frequency near the lower edge of the bands (in-
dicated). As with the two junction case a suppression
of phase fluctuations is observed for nearby modes. The
steady-state driven fluctuations of ϕl,i when ωd targets
different regions of the interbilayer band are shown in
Fig. 3(b). Also plotted is the response for colored driv-
ing equally superposing three different ωd’s showing that
broadband driving can induce suppression over a wide
range of the band. The systematic variation of the sup-
pression with α and γl is shown in Fig. 3(c) where the
relative phase fluctuations averaged over all modes in the
interbilayer band are plotted. This indicates that opti-
mal cooling occurs with a moderate coupling and weak
intrinsic damping of the interbilayer plasmon.

A complementary characterization of the stack is given
by the c-axis superconducting transport properties quan-
tified by the switching current distribution. This was ob-
tained by sweeping in a time ∆t = 1 ns the bias current
I(t) linearly in time from zero up to the critical current
Ic. The tilt of the washboard potential of every junction
in the stack increases until a phase slip event occurs, at
which point the potential difference across the stack be-
comes finite. In Fig. 4(a) the Q-Q plot for the computed

statistics of this process are reported. This compares the
quantiles of the original thermal distribution to those of
the stack subjected to different driving strengths ηh. The
curves indicate a shift in the mean of the switching dis-
tribution and a reduction in its spread, both of which are
expected for a switching distribution at a lower temper-
ature [46, pp. 207–209].

This tendency is confirmed in Fig. 4(b) where the cu-
mulative distribution function (CDF) for the switching
current is plotted for the same set of drivings. The distri-
bution is shifted to higher values of the bias current with
increasing driving, analogous to the shift that is observed
for thermal curves with lowering temperature. The sup-
pression of phase fluctuations in the interbilayer band
thus corresponds to a measurable cooling effect on an ex-
perimentally relevant figure of merit. Since ~ωh,i > kBT
the intrabilayer modes remain superconducting with no
phase slips induced.

Conclusion.—We have shown the suppression of phase
fluctuations of Josephson plasmons in bilayer cuprates
by selectively targeting an IR-active c-axis vibrational
modes that modulate the Josephson plasma frequencies.
At the difference frequency between intrabilayer and in-
terbilayer plasma modes this driving can be exploited
to implement parametric cooling. We have shown that
a moderate capacitive coupling and low damping of the
interbilayer modes is needed for this effect to be opti-
mal. While the coupling in BSCCO-2212 is too weak,
both YBCO and TBCCO-2201 satisfy these requirements
making them strong candidate materials. Additionally
they both possess phonon modes near the difference fre-
quency with atomic motion in the intrabilayer junction.
Related effects have already been observed in YBCO [47],
and the experiments reported in Refs. [6, 7] may in fact
rest on a related physical mechanism, despite the exact
resonance condition for parametric cooling not strictly
being met.

The proposed scheme may provide a pathway for dy-
namically stabilizing superconductivity above Tc so long
as superconducting coherence and a high frequency plas-
mon remains [48]. For cooling to stay effective the in-
terbilayer plasmon must remain underdamped even with
increasing temperature. Future work includes extending
the treatment to long junctions possessing phase fluctua-
tions in the ab plane [49], and investigating the possibility
of dark-state cooling schemes [28] in the richer structure
of tri-layer materials.
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S1: Electrodynamical model of a stack

In the main text the electrodynamics of a supercon-
ducting stack is modeled using an approach developed by
Machida and Sakai [S1]. Particular attention is paid in
this approach to the penetration of the electric field into
the superconducting sheets. This is necessary to correctly
treat the capacitive coupling between adjacent junctions,
which is dominant in the short-junction regime. In this
section we extend their derivation to incorporate an effec-
tive time-dependent permittivity arising from the phonon
driving.

To start we introduce some convenient notation. We
will use the label i for all properties relating to the
superconducting layers. For the Josephson junction
formed with the insulator between superconducting lay-
ers (i, i− 1) we instead use the label I for all its proper-
ties. The framework of Machida and Sakai [S1] is semi-
microscopic since it is based on the Schrödinger equation
for the macroscopic superfluid wavefunction and derives
the electric field coupling from the wavefunction dynam-
ics. This culminates in the equation

Φ0

2π
∂tφI = −

λ2
c,i

ǫsi
ρi +

λ2
c,i−1

ǫsi−1

ρi−1 +

∫ zi

zi−1

Ezdz. (S1)

for the Josephson phase dynamics of the gauge invari-
ant phase φI between superconducting layers i and i− 1,
where Φ0 is the flux quantum. This generalizes the con-
ventional Josephson relation, given by the last term in
Eq. (S1), to include the contribution arising from the
superconducting layer charge densities ρi, given the su-
perconducting layers have a dielectric constant ǫsi and a
c-axis Debye length λc,i. By considering [S1] the varia-
tion of the scalar, chemical and electrochemical potentials
across a junction leads to the relation

ρi = − ǫsi
λ2
c,i

(

Θi +
Φ0

2π

∂φI

∂t

)

(S2)

where Θi is the scalar potential in the ith superconduct-

ing layer. This, together with Eq. (S1) and Gauss’ law

∂zEz =
ρi
ǫsi
,

gives rise to an intuitive screening equation for the elec-
tric field inside the superconducting sheets,

∂2
zEz,i =

1

λ2
c,i

Ez,i. (S3)

This acts in addition to the well-established London
screening relation for the magnetic field inside the su-
perconducting layers,

∂2
zBy,i =

1

λ2
L,i

By,i, (S4)

where λL,i is the effective London penetration depth for
the ith superconducting layer. For simplicity we will as-
sume that φI is independent on y in the plane and so
only consider x spatial phase variations.
For given E and B fields in the insulating layers, we

now solve these equations to relate the electric field with
the charge on the layer, and likewise the magnetic field
with the screening currents. At this point our derivation
differs from that of Machida and Sakai [S1]. In particu-
lar we model the driven c-axis phonon mode as a time-
dependent modulation of the permittivity ǫI(t) about its
equilibrium value ǫI for the insulator between the su-
perconducting layers i and i − 1. Consequently we now
deal with the boundary conditions at the superconduc-
tor/insulator interface to properly take account of this
effect.
For a superconducting layer of thickness ti, with

boundary conditions of E = {Ed, Eu} for its downside

(d) and upside (u), corresponding to z − z0 = {0, ti}
respectively, we find that the electric field inside is given
by

Ez,i(z − z0) = Ed cosh

(

z − z0
λc,i

)

+
Eu − Ed cosh(ti/λc,i)

sinh(ti/λc,i)
sinh

(

z − z0
λc,i

)

.
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Figure S1. Schematic of the bilayer cuprate for the electro-
dynamical model. Superconducting sheets of finite thickness
ti are separated by insulating regions of thickness DI . The
Josephson effect provides coupling between the superconduct-
ing sheets.

There is a jump in the electric field between the insulator
and the superconducting layer

EI =
ǫsi

ǫI(t)
Ei

d,

which arises from the boundary condition for the electric
field at the interface between two media. We assume
there is no sheet charge at the surface so instead screening
occurs due to a charge distribution over the Debye length
scale. This leads to

ρdi =
ǫI+1(t)EI+1 − ǫI(t) cosh(ti/λc,i)EI

λc,i sinh(ti/λc,i)
, (S5a)

ρui =
ǫI+1(t) cosh(ti/λc,i)EI+1 − ǫI(t)EI

λc,i sinh(ti/λc,i)
(S5b)

for the charge densities on the downside and upside of
the ith superconducting layer.
We now go back to the general Josephson relation

Eq. (S1) and substitute for the charge densities evalu-
ated in Eq. (S5) yielding

Φ0

2π
∂tφI = sC,d

I,I−1EI−1 +DC
I EI + sC,u

I+1,IEI+1, (S6)

where the diagonal DC and off-diagonal sC capacitive
couplings are

DC
I (t) = DI +

ǫI(t)

ǫsi
λc,i coth

(

ti
λc,i

)

+
ǫI(t)

ǫsi−1

λc,i−1 coth

(

ti−1

λc,i−1

)

,

sC,u
I+1,I(t) = − ǫI+1(t)

ǫsi

λc,i

sinh(ti/λc,i)
,

sC,d
I,I−1(t) = − ǫI−1(t)

ǫsi−1

λc,i−1

sinh(ti/λc,i−1)
. (S7)

Here DI is the thickness of the insulator for the Ith junc-
tion. A similar equation relating the phase gradient to
the magnetic field may be derived by solving for and
eliminating the screening currents in the superconducting
layer, giving

Φ0

2π
∂xφI = sLI,I−1BI−1 +DL

I BI + sLI+1,IBI+1, (S8)

where the diagonalDL and off-diagonal sL inductive cou-
plings are

DL
I = DI + λL,i coth

(

ti
λL,i

)

+ λL,i−1 coth

(

ti−1

λL,i−1

)

,

sLI+1,I = − λL,i

sinh(ti/λL,i)
.

We now summarize Eq. (S6) and Eq. (S8) in matrix form
as

Φ0

2π
∂t~φ = C(t) ~E, (S9)

Φ0

2π
∂x~φ = L ~B, (S10)

where C(t) and L contain the capacitive and inductive
couplings, respectively, and with the former being time-
dependent owing to ǫI(t).
Maxwell’s equation for the insulating layers is given by

∂xB
y
I =

ǫI(t)

c2
∂tE

z
I + µ0j

z
I , (S11)

where jzI = jcI sinφI + σEz
I is the c-axis current through

the junction, composed of the Josephson supercurrent,
quantified by its critical current jcI and the quasi-particle
current, quantified by its conductivity σ. Substituting
Eq. (S9) and Eq. (S10) into Eq. (S11) we reach a closed
equation concerning just the phase dynamics,

Φ0

2π

∑

J

[

L
−1
]

IJ
∂2
xφJ =

Φ0

2π

ǫI(t)

c2

∑

J

[

C
−1(t)

]

IJ
∂2
t φJ + µ0j

c
I sin(φI)

+
Φ0

2πc2

∑

J

{

ǫI(t)
[

∂tC
−1(t)

]

IJ
+

σ

ǫ0

[

C
−1(t)

]

IJ

}

∂tφJ .

(S12)

Aside from the assumptions of the layered stack and a
time–dependent ǫI(t) within the insulating layers, this
equation provides a general description of Josephson
phase dynamics in the cuprates. In particular each term
in Eq. (S12) has an intuitive interpretation. The sin(φI)
term describes supercurrents, the ∂2

xφJ accounts for in-
ductive coupling, the ∂2

t φJ accounts for capacitive cou-
pling, and the ∂tφJ terms describes quasiparticle current
between layers.
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As described in the main text we focus on short junc-
tions where we can assume φI is x-independent. For the
moment we also drop the incoherent quasiparticle current
terms since its damping contribution to the dynamics are
accounted for later in the main text once we move to a
Langevin description. For a given junction I we are then
left with

∂2
t φI +

2π

Φ0

∑

J

CIJ (t)j
c
J

ǫ0ǫJ(t)
sin(φJ ) = 0. (S13)

Writing out the individual terms in the sum we obtain

∂2
t φI +

2π

Φ0ǫ0

[

jcI−1

sC,d
I,I−1(t)

ǫI−1(t)
sin(φI−1)

+ jcI
DC

I (t)

ǫI(t)
sin(φI)

+ jcI+1

sC,u
I+1,I(t)

ǫI+1(t)
sin(φI+1)

]

= 0.

Note that from Eq. (S7) the ratios sC,d
I,I−1(t)/ǫI−1(t) and

sC,u
I+1,I(t)/ǫI+1(t) describing off-diagonal capacitive cou-
plings are in fact time-independent. Moreover in the di-
agonal coupling DC

I (t)/ǫI(t) only the first term DI/ǫI(t)
retains the time-dependence and so it alone accounts for
the modulation by the phonon.
We now make the assumption that all superconduct-

ing layers are identical (i.e. ǫsi = ǫsi+1 = ǫs, ti = ti+1 = t,
λc,i = λc,i+1 = λc), and temporarily neglect the explicit
time-dependence in the parameters. We define a dimen-
sionless coupling parameter α according to

α2

(2α+ 1)2
=

sC,d
I,I−1s

C,d
I+1,I

DC
I D

C
I+1

.

We can then define a frequency associated with the junc-
tion I with

̟2
I =

1

2α+ 1

2π

Φ0

jcID
C
I

ǫ0ǫI
,

which enables us to rewrite the equation of motion
Eq. (S13) as

∂2
t φI + α̟2

I−1 sin(φI−1)− (2α+ 1)̟2
I sin(φI)

+ α̟2
I+1 sin(φI+1) = 0.

The result is that the microscopic material parameters
have been expressed as phenomenological frequencies ̟I

and a capacitive coupling constant α. This form is par-
ticularly useful, since it coincides with that of the well-
known Koyama-Tachiki model [S2]. Note that the limit
of α = 0, corresponding to extremely thick supercon-
ducting layers, yields uncoupled junctions. Experimen-
tally the coupling strength α has been determined to take
values in the range 0.1 → 5.

To connect with the driven equation of motion in the
main text, we consider again Eq. (S13) without dropping
the time-dependence, and find that the equation of mo-
tion is modified by the introduction of a relative driving
strength

ηI(t) = (2α+ 1)ΛI

(

ǫI
ǫI(t)

− 1

)

= ηI sin
2(ωdt).

where ΛI = DI/D
C
I , allowing Eq. (S13) to be expressed

in the form presented in the main text,

∂2
t φI + α̟2

I−1 sin(φI−1)− [2α+ 1 + ηI(t)]̟
2
I sin(φI)

+ α̟2
I+1 sin(φI+1) = 0,

again using α and ̟I as defined above.

S2: Analysis: two junction special case

In this section we present the detailed analysis of the
two junction unit cell culminating in the derivation of
expressions for the cooling limit and rate.

Transformation to normal modes

The equations of motion for the special case of two
junctions is

∂2
t φl − [2α+ 1 + ηl(t)]̟

2
l sin(φl) + α̟2

h sin(φh) = 0,

∂2
t φh + α̟2

l sin(φl)− [2α+ 1 + ηh(t)]̟
2
h sin(φh) = 0.

We linearize about the unbiased equilibrium φi = 0, with
i = {l, h}, to get

∂2
t φl − [2α+ 1 + ηl(t)]̟

2
l φl + α̟2

hφh = 0,

∂2
t φh + α̟2

l φl − [2α+ 1 + ηh(t)]̟
2
hφh = 0,

and expand the driving perturbations ηi(t) into static
and dynamic parts, i.e.

ηi(t) = ηi sin
2(ωdt)

= 1
2ηi [1− cos(2ωdt)] .

We diagonalize the dynamics

∂2
t

(

φl

φh

)

=

(

[2α+ 1 + 1
2ηl]̟

2
l −α̟2

h

−α̟2
l [2α+ 1 + 1

2ηh]̟
2
h

)(

φl

φh

)

to define a fixed transformation P from (φl,φh) to the
normal coordinates of the phase, ϕl and ϕh,

(

ϕl

ϕh

)

= P

(

φl

φh

)

.
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The normal coordinates ϕl and ϕh are then associated to
normal frequencies ωl and ωh which are driving depen-
dent. The equations of motion for the normal coordinates
are then

∂2
t ϕl + ω2

l (t)ϕl +∆h(t)ϕh = 0,

∂2
t ϕh + ω2

h(t)ϕh +∆l(t)ϕl = 0.

The time-dependent character of ηi(t) is reflected in the
time-dependence of the parameters ωi(t) and ∆i(t). The
frequencies ωi(t) modulate in time as

ω2
l (t) = ω2

l − 1
2

[

α2

(2α+ 1)2
ηh + ηl

]

̟2
h cos(2ωdt)r

2 +O(r4),

ω2
h(t) = ω2

h − 1
2ηh̟

2
h cos(2ωdt) +O(r2),

and the off-diagonal terms (the couplings) are derived as

∆l(t) = − 1
2ηh̟

2
h

α2

(1 + 2α)2
cos(2ωdt) r

2 +O(r4),

∆h(t) = − 1
2ηh̟

2
h cos(2ωdt) +O(r2),

after expanding in the small parameter r = ̟l/̟h.

Approximate coupled oscillators

Our approximation is that we neglect the time-
dependence of ωi(t), and assume that only the modu-
lated coupling terms in this frame give rise to cooling.
We write down a Hamiltonian for these normal coordi-
nates in terms of ϕi, and its conjugate momentum pi
[S3],

H =
p2l
2∆l

+
p2h
2∆h

+ 1
2∆lω

2
l ϕ

2
l +

1
2∆hω

2
hϕ

2
h

+ cos(2ωdt) ∆l∆hϕlϕh, (S14)

in which we have separated out the time dependence of
∆i(t) = ∆i cos(2ωdt). To exploit the parametric cool-
ing results of Vyatchanin [S4] we quantize and apply a
rotating wave approximation. This amounts to promot-
ing the phase normal coordinates ϕi and their conjugate
momenta pi to operator status,

ϕi → ϕ̂i

pi → p̂i,

and defining ladder operators according to

â =

√

∆lωl

2~

(

ϕ̂l +
i

∆lωl

p̂l

)

,

â† =

√

∆lωl

2~

(

ϕ̂l −
i

∆lωl

p̂l

)

,

b̂ =

√

∆hωh

2~

(

ϕ̂h +
i

∆hωh

p̂h

)

,

b̂† =

√

∆hωh

2~

(

ϕ̂h − i

∆hωh

p̂h

)

,

which after dropping the zero-point terms yields

Ĥ = ~ωlâ
†â+ ~ωhb̂

†b̂

+ ~

√

∆l∆h

ωlωh

cos(2ωdt)
(

â+ â†
)

(

b̂+ b̂†
)

.(S15)

In this system the frequencies are such that ωl < ωh,
so we make the rotating wave approximation, i.e. drop-
ping the counter-rotating terms âb̂ and â†b̂†, giving the
Hamiltonian

Ĥ = ~ωlâ
†â+ ~ωhb̂

†b̂+ ~

[

κ(t)âb̂† + κ∗(t)â†b̂
]

. (S16)

In this approximation we thus end up with a coupling
modulated according to κ(t) = κ0 exp(2iωdt), and ωd ≈
ωh − ωl, κ0 ≪ ωl. More explicitly the magnitude of the
coupling κ0 is

κ2
0 =

η2hω
2
h

4
g(α) r +O(r3),

g(α) =
α2

(2α+ 1)2
√
3α2 + 4α+ 1

,

The function g(α) is maximised at α = α0 ≈ 1.07, at
which g(α0) ≈ 3.9× 10−2.

S3: Resonant energy exchange

The physics underlying the parametric cooling imple-
mented by this modulated coupling can be exposed in the
Hamiltonian formulation, by means of a unitary trans-
formation. If we consider the Hamiltonian Eq. (S16) and
transform into a rotating frame with unitary

Û = exp

(

−iÂt

~

)

, Â = −2~ωdâ
†a,

we arrive at a very similar Hamiltonian,

Ĥ = ~(ωh +∆ω)â†â+ ~ωhb̂
†b̂+ ~

(

κ0â
†b̂+ κ∗

0âb̂
†
)

.

The time dependence of the coupling has been removed,
and the oscillators now formally appear in this frame to
have the same frequency up to a detuning ∆ω = 2ωd −
(ωh − ωl). Thus parametric modulation allows resonant
energy exchange between the oscillators via down- and
up-conversion of quanta.

Quantum master equation

We include damping and noise due to the coupling to
long-wavelength phonon modes and quasi-particle cur-
rents by coupling each oscillator to its own Markovian
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reservoir. The relaxation times are γ−1
l and γ−1

h for
the interbilayer and intrabilayer modes respectively, and
their equilibrium oscillator occupation numbers are νl
and νh. The dissipative system dynamics are described
by a master equation for the density matrix,

∂ρ̂

∂t
=− γl(1 + νl)(â

†âρ̂− 2âρ̂â† + ρ̂â†â)

− γlνl(ââ
†ρ̂− 2â†ρ̂â+ ρ̂ââ†)

− γh(1 + νh)(b̂
†b̂ρ̂− 2b̂ρ̂b̂† + ρ̂b̂†b̂)

− γhνh(b̂b̂
†ρ̂− 2b̂†ρ̂b̂+ ρ̂b̂b̂†)

+
1

i~

[

Ĥ, ρ̂
]

. (S17)

Notice that the transformation Û does not affect the
noise processes in this equation. The parametric coupling
causes the oscillators to resonantly exchange quanta,
with the upward transition rate proportional to the num-
ber of quanta in the interbilayer oscillator, and likewise

for the downward rate. Crucially, when the oscillators
are at the same temperature, the interbilayer oscillator
contains more quanta on average, and so there is a net
flow ϕl → ϕh. The driven system will therefore reach a
steady state with the ϕl interbilayer oscillator containing
fewer quanta on average than its thermal distribution for
temperature T would produce and so it is cooled. Cor-
respondingly the ϕh intrabilayer oscillator is heated.
This system can be solved for the steady state [S4].

Specifically, from the above master equation, we produce
a set of equations for the time evolution of the second-
order moments,

d

dt









〈â†â〉
〈b̂†b̂〉
〈â†b̂〉
〈âb̂†〉









= M









〈â†â〉
〈b̂†b̂〉
〈â†b̂〉
〈âb̂†〉









+









γlνl
γhνh
0
0









, (S18)

and find that they form a closed system. Above, M is
defined by

M =









−γl 0 iκ0

2 e−2iωdt − iκ0

2 e2iωdt

0 −γh − iκ0

2 e−2iωdt iκ0

2 e2iωdt

iκ0

2 e2iωdt − iκ0

2 e2iωdt − 1
2 (γl + γh) + i(ωh − ωl) 0

− iκ0

2 e−2iωdt iκ0

2 e−2iωdt 0 − 1
2 (γl + γh)− i(ωh − ωl)









.

We transform (e.g.) b̂ → b̂ e2iωdt, and reach

d

dt
~u = M

′~u+ ~v, (S19)

now with

~u =









〈â†â〉
〈b̂†b̂〉
〈â†b̂〉
〈âb̂†〉









, ~v =









γlνl
γhνh
0
0









, M
′ =









−γl 0 iκ0

2 − iκ0

2

0 −γh − iκ0

2
iκ0

2
iκ0

2 − iκ0

2 − 1
2 (γl + γh)− i∆ω 0

− iκ0

2
iκ0

2 0 − 1
2 (γl + γh) + i∆ω









.

Formally, ~u = −M
′−1

~v yields the steady-state. For the
interbilayer mode ϕl oscillator this yields a steady-state
occupation as

〈â†â〉ss = νl − S(νl − νh), (S20)

where the scale factor 0 ≤ S ≤ 1 is defined as S = ζ/γlχ
with

ζ =
κ2
0(γl + γh)

∆ω2 + (γl + γh)2
,

χ = 1 +
ζ(γl + γh)

γlγh
,

∆ω = 2ωd − (ωh − ωl),

as stated in the main text. It is useful to consider some

limits of this result. First, if there is either no cou-
pling κ0 = 0 between the plasmon modes, or no damping
γh = 0 on the intrabilayer mode ϕh, then S = 0 imply-
ing that there is no cooling. Second, in the limit of an
undamped interbilayer mode γl → 0 then S = 1 and the
suppression of the interbilayer’s occupation reaches the
minimum of 〈â†â〉ss = νh set by the intrabilayer mode.
Third, assuming that γh > 0, κ0 > 0 we find that S
decreases monotonically with γl. We see also that the in-
terbilayer mode should be underdamped, as follows. We
have κ0 . ωl as required by any model of coupled oscilla-
tors, and also γl . κ0 in order that there is a significant
cooling effect. It follows that γl . ωl, and so our theory
requires that the oscillator be underdamped. Finally, S
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exhibits the expected resonance around ∆ω = 0.

To extract the cooling rate, we examine the eigenval-
ues of the matrix M

′. This is trivial numerically, but
we gain insight from analyzing the perturbation of the
eigenvalues of M′ with κ0. In particular, in the limit of
κ0 ≪ (γl, γh) we use second-order perturbation theory to
estimate the rate. We decompose M

′ = M0 + δM, with
M0 = diag[−γl,−γh,− 1

2 (γl + γh),− 1
2 (γl + γh)] and

δM =
iκ0

2









· · +1 −1
· · −1 +1

+1 −1 · ·
−1 +1 · ·









.

Applying standard perturbation theory results in a sec-
ond order correction to the slowest eigenmode,

γdr = γl +
κ2
0

γh − γl
+O(κ3

0).

We see that the cooling rate is determined by the ther-
malization timescale of the interbilayer mode, somewhat
accelerated by the driving term. This indicates the trade-
off between the cooling having a reduced S due to γl > 0
verses a faster cooling rate when the interbilayer has some
dissipation. For the parameters shown in the main text
Fig. 2, this yields a rate γdr = 5.62×1010 s−1, as opposed
to 5.75× 1010 s−1 resulting from a numerical evaluation
of the eigenvalues. This all depends on the decay rates
γl and γh differing sufficiently that degenerate perturba-
tion theory is not required. In practice this requirement
is satisfied, as γh > γl for systems of interest here.

To summarize, this section presents a theoretical de-
scription of the cooling process as a transformation in
which the two normal mode oscillators are brought into
resonance. In this picture, the parametric driving pro-
duces a linear coupling dependent on the driving magni-
tude, which accurately predicts both the magnitude and
rate of cooling.

S4: Quantum calculation

In this section we examine the approximation made
in using a classical Langevin approach where quantum
fluctuations are neglected. For the intrabilayer plasmon,
even at room temperature we have a mean occupation
n = [exp(βωh) − 1]−1 ∼ 0.25 at 10 THz, and so it is a
possibility that the quantum noise on this oscillator may
have a measurable effect. We take Eq. (S14) and keep the
time-dependence of the oscillator frequencies ωi(t) such
that Ĥl and Ĥh become time-dependent. We evolve the
system of equations for 〈â2〉, 〈â†â〉, . . . that result from
the master equation Eq. (S17), via

∂t〈Ô〉 = Tr
(

Ô ∂tρ̂
)

. (S21)
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Figure S2. (a) Comparison of the quantum calculation of
Sec. S4 with the classical Langevin results presented in the
main text. ‘Langevin’ presents the statistics from classical
Langevin trajectories as in the main text, Fig. 2. The dot-
ted curves present quantum master equation predictions for
〈ϕ2

l 〉 for varying temperature T . The quantity plotted is
(〈ϕ2

l 〉 − 〈ϕ2
l 〉qu)/(〈ϕ

2
l 〉0 − 〈ϕ2

l 〉qu,0), namely the cooling of the
classical fluctuations of the interlayer plasmon. We find the
classical Langevin approach accurately describes the cooling
of the thermal fluctuations over the entire relevant tempera-
ture range, with the quantum calculations in fact predicting
enhanced cooling due to quenching of the intralayer mode.

This is more general than Vyatchanin calculation by (i)
retaining counter-rotating terms, and (ii) keeping the
time-dependence of the oscillator frequencies.

We are concerned with the cooling of thermal fluc-
tuations of the interbilayer mode, and so we consider
the figure of merit to be the fluctuations of the ϕl-
and pl-quadratures once the quantum component has
been subtracted. In Fig. S2, we plot the evolution of
(〈ϕ2

l 〉 − 〈ϕ2
l 〉qu)/(〈ϕ2

l 〉0 − 〈ϕ2
l 〉qu,0) for a range of tem-

peratures T spanning a region around occupation num-
bers nl ∼ 1. Despite slight technical differences in the
thermalization processes, there is excellent agreement be-
tween the classical Langevin calculation and the quantum
master equation, with the quantum calculations indicat-
ing that the cooling of thermal fluctuations may be en-
hanced due to quenching of the interbilayer mode. The
curve labelled ‘Classical’ in Fig. S2 is the (non-physical)
high-temperature limit of the quantum master equation
calculation, and as expected shows that the two ap-
proaches converge once both oscillators are in the limit of
containing many quanta. The classical Langevin calcula-
tion thus accurately captures the cooling of the thermal
fluctuations allowing the analysis in the main text to use
classical methods for the non-linear regime of the stack.



S7

S5: Temperature dependence of Josephson stack

dynamics

In this section we relate the temperature scale T0 ref-
erenced in the main text to the critical temperature of
a stack. At sufficiently low temperatures, the thermal
fluctuations of the Josephson stack explore only the har-
monic region of the washboard potential, while above a
threshold temperature there is sufficient energy for spon-
taneous thermal phase slips to occur. If current-biased,
the stack acquires a finite potential difference and thus
becomes resistive at this point.

In Fig. S3(a) we consider a stack of 100 junctions with
parameters as in the main text. Across the range of tem-
peratures 0.1 ≤ T/T0 ≤ 0.25, after the thermalization
burn-in we count the number of phase slips occurring in
the stack, and normalise by the junction count and the
Josephson period. Below T/T0 = 0.12, zero phase slips
occurred in the simulation time.

In Fig. S3(b) we apply a small bias I/Ic = 0.1 and
record the fraction of trajectories which have become re-
sistive after a simulation time of 5 ns (comparable to the
switching current calculations presented in the main text
Fig. 4, of ∆t = 1 ns). We classify trajectories as super-
conducting or resistive by comparing whether the center-
of-mass phase is more than ∆φ = 4π away from its value
∆t = 20 ps ago. This simple heuristic is capable of cap-
turing the “running” state effectively, and is not sensitive
to modest variation of the parameters ∆φ and ∆t used.
A region around T/T0 ∼ 0.15 is identified, which marks
the onset of substantial thermal phase slipping behavior.
Thus by simulating our proposed scheme at T/T0 = 0.1,
we argue that we are at a sufficiently high temperature

to avoid the need for a full quantum treatment, while
remaining below this transitional temperature range.
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Figure S3. Temperature dependence of Josephson stack dy-
namics. (a) Count of the number of phase slips in a 100-
junction unbiased Josephson stack, normalised by the number
of junctions and Josephson plasma timescale. (b) Fraction of
trajectories that become resistive within a simulation time of
5 ns. To the left of the shaded region, all trajectories remain
superconducting, while to its right, all trajectories rapidly be-
come resistive.

∗ s.denny@physics.ox.ac.uk
[S1] M. Machida and S. Sakai, Physical Review B 70, 144520

(2004).
[S2] T. Koyama and M. Tachiki, Physical Review B 54, 16183

(1996).
[S3] As the canonical momentum pi is conjugate to a nor-

mal mode of the gauge-invariant phase difference of the
junction, there is no convenient physical interpretation
to be made regarding this quantity. In particular, it is
not simply related to number differences between the su-
perconducting sheets.

[S4] S. P. Vyatchanin, Soviet Physics Doklady 22, 321 (1977).

mailto:s.denny@physics.ox.ac.uk
http://dx.doi.org/10.1103/PhysRevB.70.144520
http://dx.doi.org/10.1103/PhysRevB.54.16183
http://adsabs.harvard.edu/abs/1977SPhD...22..321V

