19 research outputs found

    Density-dependent interactions and structure of charged colloidal dispersions in the weak screening regime

    Get PDF
    We determine the structure of charge-stabilized colloidal suspensions at low ionic strength over an extended range of particle volume fractions using a combination of light and small angle neutron scattering experiments. The variation of the structure factor with concentration is analyzed within a one-component model of a colloidal suspension. We show that the observed structural behavior corresponds to a non-monotonic density dependence of the colloid effective charge and the mean interparticle interaction energy. Our findings are corroborated by similar observations from primitive model computer simulations of salt-free colloidal suspensions.Comment: Revised version, accepted to Phys. Rev. Let

    Testing the relevance of effective interaction potentials between highly charged colloids in suspension

    Full text link
    Combining cell and Jellium model mean-field approaches, Monte Carlo together with integral equation techniques, and finally more demanding many-colloid mean-field computations, we investigate the thermodynamic behavior, pressure and compressibility of highly charged colloidal dispersions, and at a more microscopic level, the force distribution acting on the colloids. The Kirkwood-Buff identity provides a useful probe to challenge the self-consistency of an approximate effective screened Coulomb (Yukawa) potential between colloids. Two effective parameter models are put to the test: cell against renormalized Jellium models

    Dynamic arrest in charged colloidal systems exhibiting large-scale structural heterogeneities

    Get PDF
    Suspensions of charged liposomes are found to exhibit typical features of strongly repulsive fluid systems at short length scales, while exhibiting structural heterogeneities at larger length scales that are characteristic of attractive systems. We model the static structure factor of these systems using effective pair interaction potentials composed of a long-range attraction and a shorter range repulsion. Our modeling of the static structure yields conditions for dynamically arrested states at larger volume fractions, which we find to agree with the experimentally observed dynamics

    Generally covariant state-dependent diffusion

    Get PDF
    Statistical invariance of Wiener increments under SO(n) rotations provides a notion of gauge transformation of state-dependent Brownian motion. We show that the stochastic dynamics of non gauge-invariant systems is not unambiguously defined. They typically do not relax to equilibrium steady states even in the absence of extenal forces. Assuming both coordinate covariance and gauge invariance, we derive a second-order Langevin equation with state-dependent diffusion matrix and vanishing environmental forces. It differs from previous proposals but nevertheless entails the Einstein relation, a Maxwellian conditional steady state for the velocities, and the equipartition theorem. The over-damping limit leads to a stochastic differential equation in state space that cannot be interpreted as a pure differential (Ito, Stratonovich or else). At odds with the latter interpretations, the corresponding Fokker-Planck equation admits an equilibrium steady state; a detailed comparison with other theories of state-dependent diffusion is carried out. We propose this as a theory of diffusion in a heat bath with varying temperature. Besides equilibrium, a crucial experimental signature is the non-uniform steady spatial distribution.Comment: 24 page

    The ratio of the lateral correlation length and particle radius determines the density profile of spherical molecules near a fluctuating membrane

    No full text
    Interactions between membranes and molecules are important for many biological processes, e.g., transport of molecules across cell membranes. However, the detailed physical description of the membrane–biomolecule system remains a challenge and simplified schemes allow capturing its main intrinsic features. In this work, by means of Monte Carlo computer simulations, we systematically study the distribution of uncharged spherical molecules in contact with a flexible surface. Our results show that the distribution for finite size particles has the same simple functional form as the one obtained for point-like particles and depends only on the ratio of the lateral correlation length of the membrane and the radius of the molecules

    Strain-induced domain formation in two-dimensional colloidal systems

    No full text
    We report on the spontaneous formation of domains in colloidal monolayers subjected to a triangular substrate, the latter created by an optical interference pattern. Upon variation of the particle number density we observe a transition from a homogeneous phase to a network of pronounced domain structures. We demonstrate that this transition is driven by the elastic strain between the colloidal system and the underlying substrate
    corecore