7,654 research outputs found

    A novel DR/NIR T-shaped aiegen: Synthesis and x-ray crystal structure study

    Get PDF
    We developed a new benzodifuran derivative as the condensation product between 2,6-diamino-4-(4-nitrophenyl)benzo[1,2-b:4,5-bā€™]difuran-3,7-dicarboxylate and 3-hydroxy-2-naphthaldehyde. The intramolecular hydrogen-bond interactions in the terminal half-salen moieties produce a sterically encumbered highly conjugated main plane and a D-A-D (donor-acceptor-donor) T-shaped structure. The novel AIEgen (aggregation-induced enhanced emission generator) fulfils the requirement of RIR (restriction of intramolecular rotation) molecules. DR/NIR (deep red/near infrared) emission was recorded in solution and in the solid state, with a noteworthy photoluminescence quantum yield recorded on the neat crystals which undergo some mechanochromism. The crystal structure study of the probe from data collected at a synchrotron X-ray source shows a main aromatic plane Ļ€-stacked in a columnar arrangement

    RelA/NF-kappaB recruitment on the bax gene promoter antagonizes p73-dependent apoptosis in costimulated T cells

    Get PDF
    The balance between antiapoptotic and proapoptotic proteins of the Bcl-2 family is critical in determining the fate of T cells in response to death stimuli. Proapoptotic genes, such as bax, are generally regulated by the p53 family of transcription factors, whereas NF-kappaB subunits can activate the transcription of antiapoptotic Bcl-2 members. Here, we show that CD28 activation protects memory T cells from irradiation-induced apoptosis by both upregulating bcl-xL and inhibiting bax gene expression. We found that p73, but not p53, binds to and trans-activates the bax gene promoter in irradiated T cells. The activation of RelA/NF-kappaB subunit in CD28 costimulated T cells and its binding onto the bax gene promoter results in suppression of bax transcription and decrease in both p73 and RNA polymerase II recruitment in vivo. RelA recruitment on the bax gene promoter is also accompanied by the lost of p300 binding and the parallel appearance of histone deacetylase-1-containing complexes. These findings identify RelA/NF-kappaB as a critical regulator of T-cell survival by affecting the balance of Bcl-2 family members

    Application of NASTRAN/COSMIC in the analysis of ship structures to underwater explosion shock

    Get PDF
    The application of NASTRAN/COSMIC in predicting the transient motion of ship structures to underwater, non-contact explosions is discussed. Examples illustrate the finite element models, mathematical formulations of loading functions and, where available, comparisons between analytical and experimental results

    A Symphony of Regulations Centered on p63 to Control Development of Ectoderm-Derived Structures

    Get PDF
    The p53-related transcription factor p63 is critically important for basic cellular functions during development of the ectoderm and derived structure and tissues, including skin, limb, palate, and hair. On the one side, p63 is required to sustain the proliferation of keratinocyte progenitors, while on the other side it is required for cell stratification, commitment to differentiate, cell adhesion, and epithelial-mesenchymal signaling. Molecules that are components or regulators of the p63 pathway(s) are rapidly being identified, and it comes with no surprise that alterations in the p63 pathway lead to congenital conditions in which the skin and other ectoderm-derived structures are affected. In this paper, we summarize the current knowledge of the molecular and cellular regulations centered on p63, derived from the comprehension of p63-linked human diseases and the corresponding animal models, as well as from cellular models and high-throughput molecular approaches. We point out common themes and features, that allow to speculate on the possible role of p63 downstream events and their potential exploitation in future attempts to correct the congenital defect in preclinical studies

    Krill oil, vitamin D and Lactobacillus reuteri cooperate to reduce gut inflammation

    Get PDF
    Current research into original therapies to treat intestinal inflammation is focusing on no-drug therapies. KLD is a mixture of krill oil (KO), probiotic Lactobacillus reuteri (LR), and vitamin D (VitD3). The aim of this study was to assess in vitro and in vivo the potential cooperative effects of KLD in reducing gut inflammation. Colorectal adenocarcinoma cell lines, CACO2 and HT29, and C57BL/6 mice were used for in vitro and in vivo analyses, respectively. Cells were exposed to cytomix (interferon gamma + tumour necrosis factor alpha (TNF-a)) to induce inflammation or co-exposed to cytomix and KO, LR and VitD3 alone or to cytomix and KLD. Animals were treated for 7 days with dextran sodium sulphate (DSS) to induce colitis or with DSS and KLD. In vitro assays: F-actin expression was analysed by immunofluorescence; scratch test and trans-epithelial electric resistance test were performed to measure wound healing; adhesion/invasion assays of adhesive and invasive Escherichia coli (AIEC) bacteria were made; mRNA expression of TNF-Ī±, interleukin (IL)-8 and vitamin D receptor (VDR) was detected by quantitative PCR. In vivo assays: body weight, clinical score, histological score and large intestine weight and length were estimated; mRNA expression of TNF-Ī±, IL-1Ɵ, IL-6, IL-10 by quantitative PCR; VDR expression was detected by quantitative PCR and immunohistochemistry. In vitro: KLD restores epithelial cell-cell adhesion and mucosal healing during inflammation, while decreases the adhesiveness and invasiveness of AIEC bacteria and TNF-Ī± and IL-8 mRNA expression and increases VDR expression. In vivo: KLD significantly improves body weight, clinical score, histological score and large intestine length of mice with DSS-induced colitis and reduces TNF-Ī±, IL-1Ɵ and IL-6 mRNA levels, while increases IL-10 mRNA and VDR levels. KLD has significant effects on the intestinal mucosa, strongly decreasing inflammation, increasing epithelial restitution and reducing pathogenicity of harmful commensal bacteria

    Effect of Climatic Factors on the Plant Population Dynamics in Temperate Pasture Implantation

    Get PDF
    The objective of this experiment was to determine the environmental influence on seedling emergence of alfalfa and fescue in mixture. We hypothesized that the temperature and precipitation data could be used to estimate field emergence of alfalfa and fescue. A field trial was carried out at Zavalla, Argentina and consisted of sowing a tall fescue ā€“ alfalfa mixture at different seeding date (March, April and June). Relationships between the range of temperature, rainfalls and alfalfa and fescue seedling emergence were described by linear regression models. Patterns of emergence and death of alfalfa and fescue seedling were found in the different sowing dates. The measurements performed in other mixed pastures on the area were used to adjust the models. Historical series (1973-1999) of temperature and rainfall data were used to verify the obtained models. The r2 of the correlation between predicted and observed demographic curves of the species was 64 to 97%. The species studied presented varied situations in the phase of emergency and death. When they were sowed in different dates, the April sowing generated an appropriate composition of the mixture. The application of models based on meteorological factors that explain the demographic variations of a forage mixture will allow to plan sowing strategies and to predict the structure of the resulting pastures

    Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis

    Full text link
    The role of Rad51 in an unperturbed cell cycle has been difficult to distinguish from its DNA repair function. Here, using EM to visualize replication intermediates assembled in Xenopus laevis egg extract, we show that Rad51 is required to prevent the accumulation of single-stranded DNA (ssDNA) gaps at replication forks and behind them. ssDNA gaps at forks arise from extended uncoupling of leading- and lagging-strand DNA synthesis. In contrast, ssDNA gaps behind forks, which are prevalent on damaged templates, result from Mre11-dependent degradation of newly synthesized DNA strands and are suppressed by inhibition of Mre11 nuclease activity. These findings reveal direct roles for Rad51 at replication forks, demonstrating that Rad51 protects newly synthesized DNA from Mre11-dependent degradation and promotes continuous DNA synthesis
    • ā€¦
    corecore