1,958 research outputs found

    The NASA-Ames Research Center stratospheric aerosol model. 2. Sensitivity studies and comparison with observatories

    Get PDF
    Sensitivity tests were performed on a one-dimensional, physical-chemical model of the unperturbed stratospheric aerosols, and model calculations were compared with observations. The tests and comparisons suggest that coagulation controls the particle number mixing ratio, although the number of condensation nuclei at the tropopause and the diffusion coefficient at high altitudes are also important. The sulfur gas source strength and the aerosol residence time are much more important than the supply of condensation nuclei in establishing mass and large particle concentrations. The particle size is also controlled mainly by gas supply and residence time. In situ observations of the aerosols and laboratory measurements of aerosols, parameters that can provide further information about the physics and chemistry of the stratosphere and the aerosols found there are provided

    An assessment of the effect of supersonic aircraft operations on the stratospheric ozone content

    Get PDF
    An assessment of the potential effect on stratospheric ozone of an advanced supersonic transport operations is presented. This assessment, which was undertaken because of NASA's desire for an up-to-date evaluation to guide programs for the development of supersonic technology and improved aircraft engine designs, uses the most recent chemical reaction rate data. From the results of the present assessment it would appear that realistic fleet sizes should not cause concern with regard to the depletion of the total ozone overburden. For example, the NOx emission of one type designed to cruise at 20 km altitude will cause the ozone overburden to increase by 0.03% to 0.12%, depending upon which vertical transport is used. These ozone changes can be compared with the predictions of a 1.74% ozone decrease (for 100 Large SST's flying at 20 km) made in 1974 by the FAA's Climatic Impact Assessment Program

    The NASA-AMES Research Center Stratospheric Aerosol Model. 1. Physical Processes and Computational Analogs

    Get PDF
    A time-dependent one-dimensional model of the stratospheric sulfate aerosol layer is presented. In constructing the model, a wide range of basic physical and chemical processes are incorporated in order to avoid predetermining or biasing the model predictions. The simulation, which extends from the surface to an altitude of 58 km, includes the troposphere as a source of gases and condensation nuclei and as a sink for aerosol droplets. The size distribution of aerosol particles is resolved into 25 categories with particle radii increasing geometrically from 0.01 to 2.56 microns such that particle volume doubles between categories

    Environmental effects of SPS: The middle atmosphere

    Get PDF
    The heavy lift launch vehicle associated with the solar power satellite (SPS) would deposit in the upper atmosphere exhaust and reentry products which could modify the composition of the stratosphere, mesosphere, and lower ionosphere. In order to assess such effects, atmospheric model simulations were performed, especially considering a geographic zone centered at the launch and reentry latitudes

    Stratospheric aerosol modification by supersonic transport operations with climate implications

    Get PDF
    The potential effects on stratospheric aerosois of supersonic transport emissions of sulfur dioxide gas and submicron size soot granules are estimated. An interactive particle-gas model of the stratospheric aerosol is used to compute particle changes due to exhaust emissions, and an accurate radiation transport model is used to compute the attendant surface temperature changes. It is shown that a fleet of several hundred supersonic aircraft, operating daily at 20 km, could produce about a 20% increase in the concentration of large particles in the stratosphere. Aerosol increases of this magnitude would reduce the global surface temperature by less than 0.01 K

    The identification and control of elm phloem necrosis and Dutch elm disease

    Get PDF

    The NASA Ames Research Center one- and two-dimensional stratospheric models. Part 2: The two-dimensional model

    Get PDF
    The two-dimensional model of stratospheric constituents is presented in detail. The derivation of pertinent transport parameters and the numerical solution of the species continuity equations, including a technique for treating the stiff differential equations that represent the chemical kinetic terms, and appropriate methods for simulating the diurnal variations of the solar zenith angle and species concentrations are discussed. Predicted distributions of tracer constituents (ozone, carbon 14, nitric acid) are compared with observed distributions

    Two-dimensional model studies of the effect of supersonic aircraft operations on the stratospheric ozone content

    Get PDF
    For a fleet of 250 aircraft, the change in the ozone column is predicted to be very close to zero; in fact, the ozone overburden may actually increase as a result of show that above 25 to 30 km the ozone abundance decreases via catalytic destruction, but at lower heights it increases, mainly as a result of coupling with odd hydrogen species. Water vapor released in the engine exhaust is predicted to cause ozone decreases; for the hypothetical engines used in the study, the total column ozone changes due to water vapor emission largely offset the predicted ozone increases due to NOx emission. The actual effect of water vapor may be less than calculated because present models do not include thermal feedback. Feedback refers to the cooling effect of additional water vapor that would tend to slow the NOx reactions which destroy ozone

    In My View

    Get PDF

    Predictions of the electrical conductivity and charging of the cloud particles in Jupiter's atmosphere

    Get PDF
    The electrical conductivity and electrical charge on cloud particles ( composed of ammonia, ammonium hydrosulfide, and water) in the atmosphere of Jupiter are computed for pressures between 5.5 and 0.1 bars. The source of ionization is galactic cosmic rays (GCR). The distribution of charge among the various reservoirs is a function of altitude and the total area of the aerosol particles. For pressures below 4 bars, the electrons are scavenged efficiently by the cloud particles, decreasing the electron- ion recombination rate and resulting in increased positive ion abundance over that in the absence of the particles. For the upper regions of each cloud layer, the area of the aerosols and the large diffusion rate of the electrons cause most aerosol particles to be negatively charged. Near the bases of the cloud layers, the larger total area of the aerosols causes most of the charge, positive and negative, to reside on particles. Where clouds are present, the reduction of the electron conductivity ranges from a factor of 30 at 0.1 bar to 10 4 at 4 bars. At pressures near 1 bar and 4 bars, the positive ion conductivity increases by a factor of 10 over that expected for the clear atmosphere. A parametric study of negative ions shows that they are likely to be insignificant. For altitudes below the 0.3- bar level the predicted positive and negative conductivities are well below the detection limit of the relaxation and mutual impedance instruments such as those employed on the Huygens entry probe
    • …
    corecore