119 research outputs found
High-accuracy simulations of highly spinning binary neutron star systems
With an increasing number of expected gravitational-wave detections of binary neutron star mergers, it is essential that gravitational-wave models employed for the analysis of observational data are able to describe generic compact binary systems. This includes systems in which the individual neutron stars are millisecond pulsars for which spin effects become essential. In this work, we perform numerical-relativity simulations of binary neutron stars with aligned and anti-aligned spins within a range of dimensionless spins of . The simulations are performed with multiple resolutions, show a clear convergence order and, consequently, can be used to test existing waveform approximants. We find that for very high spins gravitational-wave models that have been employed for the interpretation of GW170817 and GW190425 are not capable of describing our numerical-relativity dataset. We verify through a full parameter estimation study in which clear biases in the estimate of the tidal deformability and effective spin are present. We hope that in preparation of the next gravitational-wave observing run of the Advanced LIGO and Advanced Virgo detectors our new set of numerical-relativity data can be used to support future developments of new gravitational-wave models
Ill-posedness in the Einstein equations
It is shown that the formulation of the Einstein equations widely in use in
numerical relativity, namely, the standard ADM form, as well as some of its
variations (including the most recent conformally-decomposed version), suffers
from a certain but standard type of ill-posedness. Specifically, the norm of
the solution is not bounded by the norm of the initial data irrespective of the
data. A long-running numerical experiment is performed as well, showing that
the type of ill-posedness observed may not be serious in specific practical
applications, as is known from many numerical simulations.Comment: 13 pages, 3 figures, accepted for publication in Journal of
Mathematical Physics (to appear August 2000
Finite, diffeomorphism invariant observables in quantum gravity
Two sets of spatially diffeomorphism invariant operators are constructed in
the loop representation formulation of quantum gravity. This is done by
coupling general relativity to an anti- symmetric tensor gauge field and using
that field to pick out sets of surfaces, with boundaries, in the spatial three
manifold. The two sets of observables then measure the areas of these surfaces
and the Wilson loops for the self-dual connection around their boundaries. The
operators that represent these observables are finite and background
independent when constructed through a proper regularization procedure.
Furthermore, the spectra of the area operators are discrete so that the
possible values that one can obtain by a measurement of the area of a physical
surface in quantum gravity are valued in a discrete set that includes integral
multiples of half the Planck area. These results make possible the construction
of a correspondence between any three geometry whose curvature is small in
Planck units and a diffeomorphism invariant state of the gravitational and
matter fields. This correspondence relies on the approximation of the classical
geometry by a piecewise flat Regge manifold, which is then put in
correspondence with a diffeomorphism invariant state of the gravity-matter
system in which the matter fields specify the faces of the triangulation and
the gravitational field is in an eigenstate of the operators that measure their
areas.Comment: Latex, no figures, 30 pages, SU-GP-93/1-
Analytical and numerical treatment of perturbed black holes in horizon-penetrating coordinates
The deviations of non-linear perturbations of black holes from the linear
case are important in the context of ringdown signals with large
signal-to-noise ratio. To facilitate a comparison between the two we derive
several results of linear perturbation theory in coordinates which may be
adopted in numerical work. Specifically, our results are derived in Kerr-Schild
coordinates adjusted by a general height function. In the first part of the
paper we address the questions: for an initial configuration of a massless
scalar field, what is the amplitude of the excited quasinormal mode (QNM) for
any observer outside outside the event horizon, and furthermore what is the
resulting tail contribution? This is done by constructing the full Green's
function for the problem with exact solutions of the confluent Heun equation
satisfying appropriate boundary conditions. In the second part of the paper, we
detail new developments to our pseudospectral numerical relativity code bamps
to handle scalar fields. In the linear regime we employ precisely the
Kerr-Schild coordinates treated by our previous analysis. In particular, we
evolve pure QNM type initial data along with several other types of initial
data and report on the presence of overtone modes in the signal.Comment: 25 pages, 7 figure
Regularization of the Hamiltonian constraint and the closure of the constraint algebra
In the paper we discuss the process of regularization of the Hamiltonian
constraint in the Ashtekar approach to quantizing gravity. We show in detail
the calculation of the action of the regulated Hamiltonian constraint on Wilson
loops. An important issue considered in the paper is the closure of the
constraint algebra. The main result we obtain is that the Poisson bracket
between the regulated Hamiltonian constraint and the Diffeomorphism constraint
is equal to a sum of regulated Hamiltonian constraints with appropriately
redefined regulating functions.Comment: 23 pages, epsfig.st
Spin Networks and Quantum Gravity
We introduce a new basis on the state space of non-perturbative quantum
gravity. The states of this basis are linearly independent, are well defined in
both the loop representation and the connection representation, and are labeled
by a generalization of Penrose's spin netoworks. The new basis fully reduces
the spinor identities (SU(2) Mandelstam identities) and simplifies calculations
in non-perturbative quantum gravity. In particular, it allows a simple
expression for the exact solutions of the Hamiltonian constraint
(Wheeler-DeWitt equation) that have been discovered in the loop representation.
Since the states in this basis diagnolize operators that represent the three
geometry of space, such as the area and volumes of arbitrary surfaces and
regions, these states provide a discrete picture of quantum geometry at the
Planck scale.Comment: 42 page
The physical hamiltonian in nonperturbative quantum gravity
A quantum hamiltonian which evolves the gravitational field according to time
as measured by constant surfaces of a scalar field is defined through a
regularization procedure based on the loop representation, and is shown to be
finite and diffeomorphism invariant. The problem of constructing this
hamiltonian is reduced to a combinatorial and algebraic problem which involves
the rearrangements of lines through the vertices of arbitrary graphs. This
procedure also provides a construction of the hamiltonian constraint as a
finite operator on the space of diffeomorphism invariant states as well as a
construction of the operator corresponding to the spatial volume of the
universe.Comment: Latex, 11 pages, no figures, CGPG/93/
A fast stroboscopic spectral method for rotating systems in numerical relativity
We present a numerical technique for solving evolution equations, as the wave
equation, in the description of rotating astrophysical compact objects in
comoving coordinates, which avoids the problems associated with the light
cylinder. The technique implements a fast spectral matching between two domains
in relative rotation: an inner spherical domain, comoving with the sources and
lying strictly inside the light cylinder, and an outer inertial spherical
shell. Even though the emphasis is placed on spectral techniques, the matching
is independent of the specific manner in which equations are solved inside each
domain, and can be adapted to different schemes. We illustrate the strategy
with some simple but representative examples.Comment: 16 pages, 15 figure
- …