A quantum hamiltonian which evolves the gravitational field according to time
as measured by constant surfaces of a scalar field is defined through a
regularization procedure based on the loop representation, and is shown to be
finite and diffeomorphism invariant. The problem of constructing this
hamiltonian is reduced to a combinatorial and algebraic problem which involves
the rearrangements of lines through the vertices of arbitrary graphs. This
procedure also provides a construction of the hamiltonian constraint as a
finite operator on the space of diffeomorphism invariant states as well as a
construction of the operator corresponding to the spatial volume of the
universe.Comment: Latex, 11 pages, no figures, CGPG/93/