2,049 research outputs found
Dynamics of Strongly Deformed Polymers in Solution
Bead spring models for polymers in solution are nonlinear if either the
finite extensibility of the polymer, excluded volume effects or hydrodynamic
interactions between polymer segments are taken into account. For such models
we use a powerful method for the determination of the complete relaxation
spectrum of fluctuations at {\it steady state}. In general, the spectrum and
modes differ significantly from those of the linear Rouse model. For a tethered
polymer in uniform flow the differences are mainly caused by an inhomogeneous
distribution of tension along the chain and are most pronounced due to the
finite chain extensibility. Beyond the dynamics of steady state fluctuations we
also investigate the nonlinear response of the polymer to a {\em large sudden
change} in the flow. This response exhibits several distinct regimes with
characteristic decay laws and shows features which are beyond the scope of
single mode theories such as the dumbbell model.Comment: 7 pages, 3 figure
Polymer drift in a solvent by force acting on one polymer end
We investigate the effect of hydrodynamic interactions on the non-equilibrium
drift dynamics of an ideal flexible polymer pulled by a constant force applied
at one end of the polymer using the perturbation theory and the renormalization
group method. For moderate force, if the polymer elongation is small, the
hydrodynamic interactions are not screened and the velocity and the
longitudinal elongation of the polymer are computed using the renormalization
group method. Both the velocity and elongation are nonlinear functions of the
driving force in this regime. For large elongation we found two regimes. For
large force but finite chain length the hydrodynamic interactions are
screened. For large chain lengths and a finite force the hydrodynamic
interactions are only partially screened, which in three dimensions results in
unusual logarithmic corrections to the velocity and the longitudinal
elongation.Comment: 6 page
Explosive Ballooning Flux Tubes in Tokamaks
Tokamak stability to, potentially explosive, `ballooning' displacements of
elliptical magnetic flux tubes is examined in large aspect ratio equilibrium.
Above a critical pressure gradient the energy stored in the plasma may be
lowered by finite (but not infinitesimal) displacements of such tubes
(metastability). Above a higher pressure gradient, the linear stability
boundary, such tubes are linearly and nonlinearly unstable. The flux tube
displacement can be of the order of the pressure gradient scale length. Plasma
transport from displaced flux tubes may result in rapid loss of confinement.Comment: 4 pages, 6 figure
Interfacial layering in a three-component polymer system
We study theoretically the temporal evolution and the spatial structure of
the interface between two polymer melts involving three different species (A,
A* and B). The first melt is composed of two different polymer species A and A*
which are fairly indifferent to one another (Flory parameter chi_AA* ~ 0). The
second melt is made of a pure polymer B which is strongly attracted to species
A (chi_AB 0). We then show
that, due to these contradictory tendencies, interesting properties arise
during the evolution of the interface after the melts are put into contact: as
diffusion proceeds, the interface structures into several adjacent
"compartments", or layers, of differing chemical compositions, and in addition,
the central mixing layer grows in a very asymmetric fashion. Such unusual
behaviour might lead to interesting mechanical properties, and demonstrates on
a specific case the potential richness of multi-component polymer interfaces
(as compared to conventional two-component interfaces) for various
applications.Comment: Revised version, to appear in Macromolecule
Fluctuation-Induced Interactions between Rods on Membranes and Interfaces
We consider the interaction between two rods embedded in a fluctuating
surface which is governed by either surface tension or rigidity. The
modification of fluctuations by the rods leads to an attractive long-range
interaction that falls off as with their separation. The orientational
dependence of the resulting interaction is non-trivial and may lead to
interesting patterns of rod-like objects on such surfaces.Comment: Revtex, 10 pages, one figur
Straightening of Thermal Fluctuations in Semi-Flexible Polymers by Applied Tension
We investigate the propagation of a suddenly applied tension along a
thermally excited semi-flexible polymer using analytical approximations,
scaling arguments and numerical simulation. This problem is inherently
non-linear. We find sub-diffusive propagation with a dynamical exponent of 1/4.
By generalizing the internal elasticity, we show that tense strings exhibit
qualitatively different tension profiles and propagation with an exponent of
1/2.Comment: Latex file; with three postscript figures; .ps available at
http://dept.physics.upenn.edu/~nelson/pull.p
Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films
We show here that the morphological pathway of spontaneous dewetting of
ultrathin Ag films on SiO2 under nanosecond laser melting is found to be film
thickness dependent. For films with thickness h between 2 <= h <= 9.5 nm, the
morphology during the intermediate stages of dewetting consisted of
bicontinuous structures. For films 11.5 <= h <= 20 nm, the intermediate stages
consisted of regularly-sized holes. Measurement of the characteristic length
scales for different stages of dewetting as a function of film thickness showed
a systematic increase, which is consistent with the spinodal dewetting
instability over the entire thickness range investigated. This change in
morphology with thickness is consistent with observations made previously for
polymer films [A. Sharma et al, Phys. Rev. Lett., v81, pp3463 (1998); R.
Seemann et al, J. Phys. Cond. Matt., v13, pp4925, (2001)]. Based on the
behavior of free energy curvature that incorporates intermolecular forces, we
have estimated the morphological transition thickness for the intermolecular
forces for Ag on SiO2 . The theory predictions agree well with observations for
Ag. These results show that it is possible to form a variety of complex Ag
nanomorphologies in a consistent manner, which could be useful in optical
applications of Ag surfaces, such as in surface enhanced Raman sensing.Comment: 20 pages, 5 figure
Scaling of polymers in aligned rods
We study the behavior of self avoiding polymers in a background of vertically
aligned rods that are either frozen into random positions or free to move
horizontally. We find that in both cases the polymer chains are highly
elongated, with vertical and horizontal size exponents that differ by a factor
of 3. Though these results are different than previous predictions, our results
are confirmed by detailed computer simulations.Comment: 4 pages, 4 figure
Light Scattering from Nonequilibrium Concentration Fluctuations in a Polymer solution
We have performed light-scattering measurements in dilute and semidilute
polymer solutions of polystyrene in toluene when subjected to stationary
temperature gradients. Five solutions with concentrations below and one
solution with a concentration above the overlap concentration were
investigated. The experiments confirm the presence of long-range nonequilibrium
concentration fluctuations which are proportional to , where
is the applied temperature gradient and is the wave number of
the fluctuations. In addition, we demonstrate that the strength of the
nonequilibrium concentration fluctuations, observed in the dilute and
semidilute solution regime, agrees with theoretical values calculated from
fluctuating hydrodynamics. Further theoretical and experimental work will be
needed to understand nonequilibrium fluctuations in polymer solutions at higher
concentrations.Comment: revtex, 16 pages, 7 figures. J. Chem. Phys., to appea
- …