951 research outputs found

    Universal fluctuations in heavy-ion collisions in the Fermi energy domain

    Full text link
    We discuss the scaling laws of both the charged fragments multiplicity fluctuations and the charge of the largest fragment fluctuations for Xe+Sn collisions in the range of bombarding energies between 25 MeV/A and 50 MeV/A. We show close to E_{lab}=32 MeV/A the transition in the fluctuation regime of the charge of the largest fragment which is compatible with the transition from the ordered to disordered phase of excited nuclear matter. The size (charge) of the largest fragment is closely related to the order parameter characterizing this process.Comment: 4 pages, 3 figure

    Isospin diffusion in semi-peripheral 58Ni^{58}Ni + 197Au^{197}Au collisions at intermediate energies (I): Experimental results

    Get PDF
    Isospin diffusion in semi-peripheral collisions is probed as a function of the dissipated energy by studying two systems 58Ni^{58}Ni + 58Ni^{58}Ni and 58Ni^{58}Ni + 197Au^{197}Au, over the incident energy range 52-74\AM. A close examination of the multiplicities of light products in the forward part of phase space clearly shows an influence of the isospin of the target on the neutron richness of these products. A progressive isospin diffusion is observed when collisions become more central, in connection with the interaction time

    Negative heat capacity in the critical region of nuclear fragmentation: an experimental evidence of the liquid-gas phase transition

    Full text link
    An experimental indication of negative heat capacity in excited nuclear systems is inferred from the event by event study of energy fluctuations in AuAu quasi-projectile sources formed in Au+AuAu+Au collisions at 35 A.MeV. The excited source configuration is reconstructed through a calorimetric analysis of its de-excitation products. Fragment partitions show signs of a critical behavior at about 5 A.MeV excitation energy. In the same energy range the heat capacity shows a negative branch providing a direct evidence of a first order liquid gas phase transition.Comment: 4 Postscript figures, submitted to Phys. Rev. Lett. on 14-apr-199

    Isospin Diffusion in 58^{58}Ni-Induced Reactions at Intermediate Energies

    Get PDF
    Isospin diffusion is probed as a function of the dissipated energy by studying two systems 58^{58}Ni+58^{58}Ni and 58^{58}Ni+197^{197}Au, over the incident energy range 52-74\AM. Experimental data are compared with the results of a microscopic transport model with two different parameterizations of the symmetry energy term. A better overall agreement between data and simulations is obtained when using a symmetry term with a potential part linearly increasing with nuclear density. The isospin equilibration time at 52 \AM{} is estimated to 130±\pm10 fm/cc

    Thermodynamical features of multifragmentation in peripheral Au + Au Collisions at 35 A.MeV

    Full text link
    The distribution of fragments produced in events involving the multifragmentation of excited sources is studied for peripheral Au + Au reactions at 35 A.MeV. The Quasi-Projectile has been reconstructed from its de-excitation products. An isotropic emission in its rest frame has been observed, indicating that an equilibrated system has been formed. The excitation energy of the Quasi-Projectile has been determined via calorimetry. A new event by event effective thermometer is proposed based on the energy balance. A peak in the energy fluctuations is observed related to the heat capacity, suggesting that the system undergoes a liquid-gas type phase transition at an excitation energy about 5 A.MeV and a temperature 4 - 6 MeV, dependent on the freeze-out hypothesis. By analyzing different regions of the Campi-plot, the events associated with the liquid and gas phases as well as the critical region are thermodynamically characterized. The critical exponents, tau, beta,gamma, extracted from the high moments of the charge distribution are consistent with a liquid-gas type phase transition.Comment: 44 pages, 16 Postscript figures, Fig14_nucl-ex.eps in colors, to be published in Nucl.Phys.A (1999

    The prominent role of the heaviest fragment in multifragmentation and phase transition for hot nuclei

    Get PDF
    The role played by the heaviest fragment in partitions of multifragmenting hot nuclei is emphasized. Its size/charge distribution (mean value, fluctuations and shape) gives information on properties of fragmenting nuclei and on the associated phase transition.Comment: 11 pages, Proceedings of IWND09, August 23-25, Shanghai (China

    Constrained caloric curves and phase transition for hot nuclei

    Get PDF
    Simulations based on experimental data obtained from multifragmenting quasi-fused nuclei produced in central 129^{129}Xe + nat^{nat}Sn collisions have been used to deduce event by event freeze-out properties in the thermal excitation energy range 4-12 AMeV [Nucl. Phys. A809 (2008) 111]. From these properties and the temperatures deduced from proton transverse momentum fluctuations, constrained caloric curves have been built. At constant average volumes caloric curves exhibit a monotonic behaviour whereas for constrained pressures a backbending is observed. Such results support the existence of a first order phase transition for hot nuclei.Comment: 14 pages, 5 figures, accepted in Physics Letters
    • …
    corecore