1,368 research outputs found
A Semi-Analytical Analysis of Texture Collapse
This study presents a simplified approach to studying the dynamics of global
texture collapse. We derive equations of motion for a spherically symmetric
field configuration using a two parameter ansatz. Then we analyse the effective
potential for the resulting theory to understand possible trajectories of the
field configuration in the parameter space of the ansatz. Numerical results are
given for critical winding and collapse time in spatially flat non-expanding,
and flat expanding universes. In addition, the open non-expanding and
open-expanding cases are studied.Comment: 12 pages, figures available from author, BROWN-HET-895, uses phyzz
Beyond the Small-Angle Approximation For MBR Anisotropy from Seeds
In this paper we give a general expression for the energy shift of massless
particles travelling through the gravitational field of an arbitrary matter
distribution as calculated in the weak field limit in an asymptotically flat
space-time. It is {\it not} assumed that matter is non-relativistic. We
demonstrate the surprising result that if the matter is illuminated by a
uniform brightness background that the brightness pattern observed at a given
point in space-time (modulo a term dependent on the oberver's velocity) depends
only on the matter distribution on the observer's past light-cone. These
results apply directly to the cosmological MBR anisotropy pattern generated in
the immediate vicinity of of an object like a cosmic string or global texture.
We apply these results to cosmic strings, finding a correction to previously
published results for in the small-angle approximation. We also derive the
full-sky anisotropy pattern of a collapsing texture knot.Comment: 23 pages, FERMILAB-Pub-94/047-
Numerical Methods in Cosmological Global Texture Simulations
Numerical simulations of the evolution of a global topological defect field
have two characteristic length scales --- one macrophysical, of order the field
correlation length, and the other microphysical, of order the field width. The
situation currently of most interest to particle cosmologists involves the
behaviour of a GUT-scale defect field at the epoch of decoupling, where the
ratio of these scales is typically of order . Such a ratio is
unrealisable in numerical work, and we consider the approximations which may be
employed to deal with this. Focusing on the case of global texture we outline
the implementation of the associated algorithms, and in particular note the
subtleties involved in handling texture unwinding events. Comparing the results
in each approach then establishes that, subject to certain constraints on the
minimum grid resolution, the methods described are both robust and consistent
with one another.Comment: LaTeX, IMPERIAL/TP/93-94/2
Variability of exhaled breath condensate leukotriene B4 and 8-isoprostane in COPD patients
The reproducibility of exhaled breath condensate (EBC) mediators is not well documented in chronic obstructive pulmonary disease (COPD). This study assessed within assay (WA), within (WD) and between day (BD) reproducibility of EBC leukotriene B4 (LTB4) and 8-isoprostane. Three EBC samples were collected from 24 COPD patients separated by 1 h and 1 wk, to assess WD and BD reproducibility. WA reproducibility was assessed by sample analysis by enzyme immunoassay in triplicate. WA coefficient of variation for LTB4 and 8-isoprostane (18.2% and 29.2%, respectively) was lower than corresponding values for WD (47.7% and 65.3%, respectively) and BD (75.7% and 79.1%, respectively). Repeatability coefficient for 8-isoprostane and LTB4 assays were 18.6 pg/ml and 13.2 pg/ml, respectively. Group mean differences for WD and BD were small and statistically nonsignificant. Using the Bland Altman method, there were wide limits of agreement for WD (−51.6 to 47.2 for 8-isoprostane and −31.8 to 31.4 for LTB4) and BD reproducibility (−61.4 to 75.7 for 8-isoprostane and −29.3 to 38.6 for LTB4). This is the first study to fully report the variability of EBC 8-isoprostane and LTB4 in COPD. WA variability and group mean changes were small. However, we observed considerable WD and BD variability for these biomarkers
On The Absence Of Open Strings In A Lattice-Free Simulation Of Cosmic String Formation
Lattice-based string formation algorithms can, at least in principle, be
reduced to the study of the statistics of the corresponding aperiodic random
walk. Since in three or more dimensions such walks are transient this approach
necessarily generates a population of open strings. To investigate whether open
strings are an artefact of the lattice we develop an alternative lattice-free
simulation of string formation. Replacing the lattice with a graph generated by
a minimal dynamical model of a first order phase transition we obtain results
consistent with the hypothesis that the energy density in string is due to a
scale-invariant Brownian distribution of closed loops alone.Comment: 9 pages ReVTeX, 1 Postscript figure, minor changes for publicatio
Power Spectrum Estimators For Large CMB Datasets
Forthcoming high-resolution observations of the Cosmic Microwave Background
(CMB) radiation will generate datasets many orders of magnitude larger than
have been obtained to date. The size and complexity of such datasets presents a
very serious challenge to analysing them with existing or anticipated
computers. Here we present an investigation of the currently favored algorithm
for obtaining the power spectrum from a sky-temperature map --- the quadratic
estimator. We show that, whilst improving on direct evaluation of the
likelihood function, current implementations still inherently scale as the
equivalent of the cube of the number of pixels or worse, and demonstrate the
critical importance of choosing the right implementation for a particular
dataset.Comment: 8 pages LATEX, no figures, corrected misaligned columns in table
Analytical modeling of large-angle CMBR anisotropies from textures
We propose an analytic method for predicting the large angle CMBR temperature
fluctuations induced by model textures. The model makes use of only a small
number of phenomenological parameters which ought to be measured from simple
simulations. We derive semi-analytically the -spectrum for together with its associated non-Gaussian cosmic variance error bars. A
slightly tilted spectrum with an extra suppression at low is found, and we
investigate the dependence of the tilt on the parameters of the model. We also
produce a prediction for the two point correlation function. We find a high
level of cosmic confusion between texture scenarios and standard inflationary
theories in any of these quantities. However, we discover that a distinctive
non-Gaussian signal ought to be expected at low , reflecting the prominent
effect of the last texture in these multipoles
On Random Bubble Lattices
We study random bubble lattices which can be produced by processes such as
first order phase transitions, and derive characteristics that are important
for understanding the percolation of distinct varieties of bubbles. The results
are relevant to the formation of topological defects as they show that infinite
domain walls and strings will be produced during appropriate first order
transitions, and that the most suitable regular lattice to study defect
formation in three dimensions is a face centered cubic lattice. Another
application of our work is to the distribution of voids in the large-scale
structure of the universe. We argue that the present universe is more akin to a
system undergoing a first-order phase transition than to one that is
crystallizing, as is implicit in the Voronoi foam description. Based on the
picture of a bubbly universe, we predict a mean coordination number for the
voids of 13.4. The mean coordination number may also be used as a tool to
distinguish between different scenarios for structure formation.Comment: several modifications including new abstract, comparison with froth
models, asymptotics of coordination number distribution, further discussion
of biased defects, and relevance to large-scale structur
Breast cancer teams: the impact of constitution, new cancer workload, and methods of operation on their effectiveness
National guidance and clinical guidelines recommended multidisciplinary teams (MDTs) for cancer services in order to bring specialists in relevant disciplines together, ensure clinical decisions are fully informed, and to coordinate care effectively. However, the effectiveness of cancer teams was not previously evaluated systematically. A random sample of 72 breast cancer teams in England was studied (548 members in six core disciplines), stratified by region and caseload. Information about team constitution, processes, effectiveness, clinical performance, and members' mental well-being was gathered using appropriate instruments. Two input variables, team workload (P=0.009) and the proportion of breast care nurses (P=0.003), positively predicted overall clinical performance in multivariate analysis using a two-stage regression model. There were significant correlations between individual team inputs, team composition variables, and clinical performance. Some disciplines consistently perceived their team's effectiveness differently from the mean. Teams with shared leadership of their clinical decision-making were most effective. The mental well-being of team members appeared significantly better than in previous studies of cancer clinicians, the NHS, and the general population. This study established that team composition, working methods, and workloads are related to measures of effectiveness, including the quality of clinical care
Review of technological developments and LCA applications on biobased SAF conversion processes
The aviation industry, driven by evolving societal needs, faces rising demand post-Covid and increasing pressure to align with emission reduction targets, prompting the development of drop-in sustainable aviation fuels (SAF). Their compatibility with existing aircraft and infrastructure will help to implement these fuels with the urgency the global climate crisis requires. This review delves into the benefits and challenges of various feedstocks, addressing complexities in estimating feedstock availability by location. Identified research gaps include enhancing feedstock availability, yield, and diversity, investigating compositions, and implementing sustainable agricultural practices. A summary of ASTM-certified conversion processes and technical specifications is outlined, prompting further research into conversion efficiency, catalyst selectivity, blending limits, aromatic compounds, combustion instability, and numerical modeling. A summary of recent life cycle assessments (LCA) highlighted gaps in cradle-to-cradle assessments, location-specific analyses, temporal considerations, and broader environmental impact categories. Recommendations stress obtaining primary data for enhanced LCA accuracy, conducting more specialized and general LCA studies and combining LCA, techno-economic analysis, fuel requirements, and socio-political assessments in multi-criteria decision analysis. This paper underlines the pressing need for comprehensive research to inform SAF production alternatives in the context of global climate crisis mitigation
- …