2,055 research outputs found

    Orbiter CCTV video signal noise analysis

    Get PDF
    The amount of steady state and transient noise which will couple to orbiter CCTV video signal wiring is predicted. The primary emphasis is on the interim system, however, some predictions are made concerning the operational system wiring in the cabin area. Noise sources considered are RF fields from on board transmitters, precipitation static, induced lightning currents, and induced noise from adjacent wiring. The most significant source is noise coupled to video circuits from associated circuits in common connectors. Video signal crosstalk is the primary cause of steady state interference, and mechanically switched control functions cause the largest induced transients

    Top quark chromomagnetic dipole moment in the littlest Higgs model with T-parity

    Full text link
    The littlest Higgs model with T-parity, which is called LHTLHT model, predicts the existence of the new particles, such as heavy top quark, heavy gauge bosons, and mirror fermions. We calculate the one-loop contributions of these new particles to the top quark chromomagnetic dipole moment (CMDM)(CMDM) ΔK\Delta K. We find that the contribution of the LHTLHT model is one order of magnitude smaller than the standard model prediction value.Comment: latex files, 12 pages, 3 figure

    Brief review of the searches for the rare decays Bs0μ+μB^0_s \rightarrow \mu^+ \mu^- and B0μ+μB^0 \rightarrow \mu^+ \mu^-

    Full text link
    The current experimental status of the searches for the very rare decays Bs0μ+μB^0_s \rightarrow \mu^+ \mu^- and B0μ+μB^0 \rightarrow \mu^+ \mu^- is discussed. These channels are highly sensitive to various extensions of the Standard Model, specially in the scalar and pseudoscalar sector. The recent, most sensitive measurements from the CDF, ATLAS, CMS and LHCb collaborations are discussed and the combined upper exclusion limit on the branching fractions determined by the LHC experiments is shown to be 4.2×1094.2\times 10^{-9} for Bs0μ+μB^0_s \rightarrow \mu^+ \mu^- and 0.8×1090.8\times 10^{-9} for B0μ+μB^0 \rightarrow \mu^+ \mu^-. The implications of these tight bounds on a selected set of New Physics models is sketched.Comment: 20 pages, 15 figures, invited review for Modern Physics Letters

    Electroweak and Flavour Structure of a Warped Extra Dimension with Custodial Protection

    Full text link
    We present the electroweak and flavour structure of a model with a warped extra dimension and the bulk gauge group SU(3) x SU(2)_L x SU(2)_R x P_LR x U(1)_X. The presence of SU(2)_R implies an unbroken custodial symmetry in the Higgs system allowing to eliminate large contributions to the T parameter, whereas the P_LR symmetry and the enlarged fermion representations provide a custodial symmetry for flavour diagonal and flavour changing couplings of the SM Z boson to left-handed down-type quarks. We diagonalise analytically the mass matrices of charged and neutral gauge bosons including the first KK modes. We present the mass matrices for quarks including heavy KK modes and discuss the neutral and charged currents involving light and heavy fields. We give the corresponding complete set of Feynman rules in the unitary gauge.Comment: 74 pages, 2 figures. clarifying comments and references added, version to be published in JHE

    spl(2,1) dynamical supersymmetry and suppression of ferromagnetism in flat band double-exchange models

    Full text link
    The low energy spectrum of the ferromagnetic Kondo lattice model on a N-site complete graph extended with on-site repulsion is obtained from the underlying spl(2,1) algebra properties in the strong coupling limit. The ferromagnetic ground state is realized for 1 and N+1 electrons only. We identify the large density of states to be responsible for the suppression of the ferromagnetic state and argue that a similar situation is encountered in the Kagome, pyrochlore, and other lattices with flat bands in their one-particle density of states.Comment: 7 pages, 1 figur

    The Impact of a 4th Generation on Mixing and CP Violation in the Charm System

    Full text link
    We study D0-D0 mixing in the presence of a fourth generation of quarks. In particular, we calculate the size of the allowed CP violation which is found at the observable level well beyond anything possible with CKM dynamics. We calculate the semileptonic asymmetry a_SL and the mixing induced CP asymmetry eta_fS_f which are correlated with each other. We also investigate the correlation of eta_fS_f with a number of prominent observables in other mesonic systems like epsilon'/epsilon, Br(K_L -> pi0 nu nu), Br(K+ -> pi+ nu nu), Br(B_s ->mu+ mu-), Br(B_d -> mu+ mu-) and finally S_psi phi in the B_s system. We identify a clear pattern of flavour and CP violation predicted by the SM4 model: While simultaneous large 4G effects in the K and D systems are possible, accompanying large NP effects in the B_d system are disfavoured. However this behaviour is not as pronounced as found for the LHT and RSc models. In contrast to this, sizeable CP violating effects in the B_s system are possible unless extreme effects in eta_fS_f are found, and Br(B_s ->mu+ mu-) can be strongly enhanced regardless of the situation in the D system. We find that, on the other hand, S_psi phi > 0.2 combined with the measured epsilon'/epsilon significantly diminishes 4G effects within the D system.Comment: 22 pages, 23 figures, v2 (references added

    Particle-Antiparticle Mixing, epsilon_K, Delta Gamma_q, A_SL^q, A_CP(B_d -> psi K_S), A_CP(B_s -> psi phi) and B -> X_{s,d} gamma in the Littlest Higgs Model with T-Parity

    Full text link
    We calculate a number of observables related to particle-antiparticle mixing in the Littlest Higgs model with T-parity (LHT). The resulting effective Hamiltonian for Delta F=2 transitions agrees with the one of Hubisz et al., but our phenomenological analysis goes far beyond the one of these authors. In particular, we point out that the presence of mirror fermions with new flavour and CP-violating interactions allows to remove the possible Standard Model (SM) discrepancy between the CP asymmetry S_{psi K_S} and large values of |V_ub| and to obtain for the mass difference Delta M_s < (Delta M_s)_SM as suggested by the recent result by the CDF collaboration. We also identify a scenario in which simultaneously significant enhancements of the CP asymmetries S_{phi psi} and A_SL^q relative to the SM are possible, while satisfying all existing constraints, in particular from the B -> X_s gamma decay and A_CP(B -> X_s gamma) that are presented in the LHT model here for the first time. In another scenario the second, non-SM, value for the angle gamma=-(109+-6) from tree level decays, although unlikely, can be made consistent with all existing data with the help of mirror fermions. We present a number of correlations between the observables in question and study the implications of our results for the mass spectrum and the weak mixing matrix of mirror fermions. In the most interesting scenarios, the latter one turns out to have a hierarchical structure that differs significantly from the CKM one.Comment: 51 pages, 20 figures, 1 table. Extended discussion of the phases in the new mixing matrix V_Hd, some references added or updated, conclusions unchanged. Final version published in JHE

    "Self pop-out”: agency enhances self-recognition in visual search

    Get PDF
    In real-life situations, we are often required to recognize our own movements among movements originating from other people. In social situations, these movements are often correlated (for example, when dancing or walking with others) adding considerable difficulty to self-recognition. Studies from visual search have shown that visual attention can selectively highlight specific features to make them more salient. Here, we used a novel visual search task employing virtual reality and motion tracking to test whether visual attention can use efferent information to enhance self-recognition of one's movements among four or six moving avatars. Active movements compared to passive movements allowed faster recognition of the avatar moving like the subject. Critically, search slopes were flat for the active condition but increased for passive movements, suggesting efficient search for active movements. In a second experiment, we tested the effects of using the participants' own movements temporally delayed as distractors in a self-recognition discrimination task. We replicated the results of the first experiment with more rapid self-recognition during active trials. Importantly, temporally delayed distractors increased reaction times despite being more perceptually different than the spatial distractors. The findings demonstrate the importance of agency in self-recognition and self-other discrimination from movement in social setting
    corecore