2,852 research outputs found

    Gamma-ray and Radio Constraints of High Positron Rate Dark Matter Models Annihilating into New Light Particles

    Full text link
    The possibility of explaining the positron and electron excess recently found by the PAMELA and ATIC collaborations in terms of dark matter (DM) annihilation has attracted considerable attention. Models surviving bounds from, e.g, antiproton production generally fall into two classes, where either DM annihilates directly with a large branching fraction into light leptons, or, as in the recent models of Arkani-Hamed et al., and of Nomura and Thaler, the annihilation gives low-mass (pseudo)scalars or vectors ϕ\phi which then decay into μ+μ\mu^+\mu^- or e+ee^+e^-. While the constraints on the first kind of models have recently been treated by several authors, we study here specifically models of the second type which rely on an efficient Sommerfeld enhancement in order to obtain the necessary boost in the annihilation cross section. We compute the photon flux generated by QED radiative corrections to the decay of ϕ\phi and show that this indeed gives a rather spectacular broad peak in E2dσ/dEE^2d\sigma/dE, that for these extreme values of the cross section violate gamma-ray observations of the Galactic center for DM density profiles steeper than that of Navarro, Frenk and White. The most stringent constraint comes from the comparison of the predicted synchrotron radiation in the central part of the Galaxy with radio observations of Sgr A*. For the most commonly adopted DM profiles, the models that provide a good fit to the PAMELA and ATIC data are ruled out, unless there are physical processes that boost the local anti-matter fluxes more than one order of magnitude, while not affecting the gamma-ray or radio fluxes.Comment: 5 pages, 3 figures, matches published versio

    Antimatter production in supernova remnants

    Full text link
    We calculate the energy spectra of cosmic rays (CR) and their secondaries produced in a supernova remnant (SNR), taking into account the time-dependence of the SNR shock. We model the trajectories of charged particles as a random walk with a prescribed diffusion coefficient, accelerating the particles at each shock crossing. Secondary production by CRs colliding with gas is included as a Monte Carlo process. We find that SNRs produce less antimatter than suggested previously: The positron/electron ratio and the antiproton/proton ratio are a few percent and few ×105\times 10^{-5}, respectively. Moreover, the obtained positron/electron ratio decreases with energy, while the antiproton/proton ratio rises at most by a factor of two above 10 GeV.Comment: 8 pages, 8 eps figures; extended version of arXiv:1004.1118; v2: minor corrections, matches published versio

    Human resources for control of tuberculosis and HIV-associated tuberculosis.

    Get PDF
    The global targets for tuberculosis (TB) control were postponed from 2000 to 2005, but on current evidence a further postponement may be necessary. Of the constraints preventing these targets being met, the primary one appears to be the lack of adequately trained and qualified staff. This paper outlines: 1) the human resources and skills for global TB and human immunodeficiency virus (HIV) TB control, including the human resources for implementing the DOTS strategy, the additional human resources for implementing joint HIV-TB control strategies and what is known about human resource gaps at global level; 2) the attempts to quantify human resource gaps by focusing on a small country in sub-Saharan Africa, Malawi; and 3) the main constraints to human resources and their possible solutions, under six main headings: human resource planning; production of human resources; distribution of the work-force; motivation and staff retention; quality of existing staff; and the effect of HIV/AIDS. We recommend an urgent shift in thinking about the human resource paradigm, and exhort international policy makers and the donor community to make a concerted effort to bridge the current gaps by investing for real change

    Dark matter annihilation at the galactic center

    Get PDF
    If cold dark matter is present at the galactic center, as in current models of the dark halo, it is accreted by the central black hole into a dense spike. Particle dark matter then annihilates strongly inside the spike, making it a compact source of photons, electrons, positrons, protons, antiprotons, and neutrinos. The spike luminosity depends on the density profile of the inner halo: halos with finite cores have unnoticeable spikes, while halos with inner cusps may have spikes so bright that the absence of a detected neutrino signal from the galactic center already places interesting upper limits on the density slope of the inner halo. Future neutrino telescopes observing the galactic center could probe the inner structure of the dark halo, or indirectly find the nature of dark matter.Comment: 4 pages, 5 figure

    Persistence of Granulocytic Ehrlichia Infection During Wintertime in Two Sheep Flocks in Norway

    Get PDF
    Granulocytic Ehrlichia infection in sheep is common in Norway in areas with Ixodes ricinus. In this study, 2 sheep flocks that had been grazing on I. ricinus infested pastures the previous season, were blood sampled after being housed indoors for nearly 6 months during wintertime. Thirty animals from each flock were examined for granulocytic Ehrlichia infection in the peripheral blood by blood inoculation studies, stained blood smear evaluation, polymerase chain reaction (PCR) analysis and serology (IFAantibodies). The animals were sampled twice within a three-week period, the first time before and the second time after lambing. Two sheep in one flock were found Ehrlichia positive by both blood smear evaluation and PCR before lambing, and 3 sheep were found positive after lambing; 2 by blood smear examination and 3 by PCR. In the other flock, no sheep was found infected before lambing, but 2 ewes were found positive after lambing by both blood smear evaluation and PCR. In the first flock, 87% of the animals were found seropositive before lambing, and the mean antibody titre (log 10 ± SD) to E. equi was 2.45 ± 0.401. In the second flock, 40% were found seropositive before lambing, and the mean antibody titre was 1.93 ± 0.260. Seroprevalence and mean antibody titre in these 2 flocks were significantly different (p < 0.001). The present study indicates that sheep may be a reservoir host for granulocytic Ehrlichia infection from one grazing season to the next under natural conditions in Norway

    Diffuse inverse Compton and synchrotron emission from dark matter annihilations in galactic satellites

    Full text link
    Annihilating dark matter particles produce roughly as much power in electrons and positrons as in gamma ray photons. The charged particles lose essentially all of their energy to inverse Compton and synchrotron processes in the galactic environment. We discuss the diffuse signature of dark matter annihilations in satellites of the Milky Way (which may be optically dark with few or no stars), providing a tail of emission trailing the satellite in its orbit. Inverse Compton processes provide X-rays and gamma rays, and synchrotron emission at radio wavelengths might be seen. We discuss the possibility of detecting these signals with current and future observations, in particular EGRET and GLAST for the gamma rays.Comment: 13 pages, 5 figure

    Antimatter spectra from a time-dependent modeling of supernova remnants

    Full text link
    We calculate the energy spectra of cosmic rays (CR) and their secondaries produced in a supernova remnant (SNR), taking into account the time-dependence of the SNR shock. We model the trajectories of charged particles as a random walk with a prescribed diffusioncoefficient, accelerating the particles at each shock crossing. Secondary production by CRs colliding with gas is included as a Monte Carlo process. We find that SNRs produce less antimatter than suggested previously: The positron/electron ratio and the antiproton/proton ratio are a few percent and few ×105\times 10^{-5}, respectively. Both ratios do not rise with energy.Comment: 4 pages, 4 eps figures; v2: results for time-dependent magnetic field adde
    corecore