120 research outputs found

    Efficacy of a synthetic calcium phosphate with submicron surface topography as autograft extender in lapine posterolateral spinal fusion.

    Get PDF
    Posterolateral spinal fusion (PLF) is a common procedure in orthopedic surgery that is performed to fuse adjacent vertebrae to reduce symptoms related to spinal conditions. In the current study, a novel synthetic calcium phosphate with submicron surface topography was evaluated as an autograft extender in a validated rabbit model of PLF. Fifty-nine skeletally mature New Zealand white rabbits were divided into three groups and underwent single-level intertransverse process PLF at L4-5 using (1) autologous bone graft (ABG) alone or in a 1:1 combination with (2) calcium phosphate granules (ABG/BCPgranules ), or (3) granules embedded in a fast-resorbing polymeric carrier (ABG/BCPputty ). After 6, 9, and 12 weeks, animals were sacrificed and spinal fusion was assessed by manual palpation, Radiographs, micro-CT, mechanical testing (12 weeks only), histology, and histomorphometry. Based on all endpoints, all groups showed a gradual progression in bone formation and maturation during time, leading to solid fusion masses between the transverse processes after 12 weeks. Fusion assessments by manual palpation, radiography and histology were consistent and demonstrated equivalent fusion rates between groups, with high bilateral fusion rates after 12 weeks. Mechanical tests after 12 weeks indicated substantially lower range of motion for all groups, compared to non-operated controls. By histology and histomorphometry, the gradual formation and maturation of bone in the fusion mass was confirmed for each graft type. With these results, we describe the equivalent performance between autograft and a novel calcium phosphate material as an autograft extender in a rabbit model of PLF using an extensive range of evaluation techniques. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res B Part B, 2019

    Parallel declines in species and genetic diversity driven by anthropogenic disturbance: a multispecies approach in a French Atlantic dune system.

    Get PDF
    Numerous studies assess the correlation between genetic and species diversities, but the processes underlying the observed patterns have only received limited attention. For instance, varying levels of habitat disturbance across a region may locally reduce both diversities due to extinctions, and increased genetic drift during population bottlenecks and founder events. We investigated the regional distribution of genetic and species diversities of a coastal sand dune plant community along 240 kilometers of coastline with the aim to test for a correlation between the two diversity levels. We further quantify and tease apart the respective contributions of natural and anthropogenic disturbance factors to the observed patterns. We detected significant positive correlation between both variables. We further revealed a negative impact of urbanization: Sites with a high amount of recreational infrastructure within 10 km coastline had significantly lowered genetic and species diversities. On the other hand, a measure of natural habitat disturbance had no effect. This study shows that parallel variation of genetic and species diversities across a region can be traced back to human landscape alteration, provides arguments for a more resolute dune protection, and may help to design priority conservation areas

    Financialization and the monetary circuit : a macro-accounting approach

    Get PDF
    This paper aims to cross-breed the standard monetary circuit accounting model with elements from the Post-Keynesian literature. The goals are: (i) to analyse the implications of credit-based household consumption fed by capital asset inflation for the soundness of a pure credit-money economy of production; and (ii) to provide a more sophisticated description of the working of modern financial systems than the one grounded in the usual 'bank-based vs. market based' distinction

    Ultra-porous titanium oxide scaffold with high compressive strength

    Get PDF
    Highly porous and well interconnected titanium dioxide (TiO2) scaffolds with compressive strength above 2.5 MPa were fabricated without compromising the desired pore architectural characteristics, such as high porosity, appropriate pore size, surface-to-volume ratio, and interconnectivity. Processing parameters and pore architectural characteristics were investigated in order to identify the key processing steps and morphological properties that contributed to the enhanced strength of the scaffolds. Cleaning of the TiO2 raw powder removed phosphates but introduced sodium into the powder, which was suggested to decrease the slurry stability. Strong correlation was found between compressive strength and both replication times and solid content in the ceramic slurry. Increase in the solid content resulted in more favourable sponge loading, which was achieved due to the more suitable rheological properties of the ceramic slurry. Repeated replication process induced only negligible changes in the pore architectural parameters indicating a reduced flaw size in the scaffold struts. The fabricated TiO2 scaffolds show great promise as load-bearing bone scaffolds for applications where moderate mechanical support is required

    Hiding or hospitalising? On dilemmas of pregnancy management in East Cameroon

    Get PDF
    Current international debates and policies on safe motherhood mainly propose biomedical interventions to reduce the risks during pregnancy and delivery. Yet, the conceptualisations of risk that underlie this framework may not correspond with local perceptions of reproductive dangers; consequently, hospital services may remain underutilised. Inspired by a growing body of anthropological literature exploring local fertility-related fears, and drawing on 15 months of fieldwork, this paper describes ideas about risky reproduction and practices of pregnancy protection in a Cameroonian village. It shows that social and supernatural threats to fertility are deemed more significant than the physical threats of fertility stressed at the (inter)national level. To protect their pregnancies from those social and supernatural influences, however, women take very physical measures. It is in this respect that biomedical interventions, physical in their very nature, do connect to local methods of pregnancy management. Furthermore, some pregnant women purposefully deploy hospital care in an attempt to reduce relational uncertainties. Explicit attention to the intersections of the social and the physical, and of the supernatural and the biomedical, furthers anthropological knowledge on fertility management and offers a starting point for more culturally sensitive safe motherhood interventions

    Household and community socioeconomic and environmental determinants of child nutritional status in Cameroon

    Get PDF
    BACKGROUND: Undernutrition is a leading cause of child mortality in developing countries, especially in sub-Saharan Africa. We examine the household and community level socioeconomic and environmental factors associated with child nutritional status in Cameroon, and changes in the effects of these factors during the 1990s economic crisis. We further consider age-specific effects of household economic status on child nutrition. METHODS: Child nutritional status was measured by weight-for-age (WAZ) and height-for-age (HAZ) z-scores. Data were from Demographic and Health Surveys conducted in 1991 and 1998. We used analysis of variance to assess the bivariate association between the explanatory factors and nutritional status. Multivariate, multilevel analyses were undertaken to estimate the net effects of both household and community factors. RESULTS: Average WAZ and HAZ declined respectively from -0.70 standard deviations (SD), i.e. 0.70 SD below the reference median, to -0.83 SD (p = 0.006) and from -1.03 SD to -1.14 SD (p = 0.026) between 1991 and 1998. These declines occurred mostly among boys, children over 12 months of age, and those of low socioeconomic status. Maternal education and maternal health seeking behavior were associated with better child nutrition. Household economic status had an overall positive effect that increased during the crisis, but it had little effect in children under 6 months of age. Improved household (water, sanitation and cooking fuel) and community environment had positive effects. Children living in the driest regions of the country were consistently worst off, and those in the largest cities were best off. CONCLUSION: Both household and community factors have significant impact on child health in Cameroon. Understanding these relationships can facilitate design of age- and community-specific intervention programs

    Characterization of Granulations of Calcium and Apatite in Serum as Pleomorphic Mineralo-Protein Complexes and as Precursors of Putative Nanobacteria

    Get PDF
    Calcium and apatite granulations are demonstrated here to form in both human and fetal bovine serum in response to the simple addition of either calcium or phosphate, or a combination of both. These granulations are shown to represent precipitating complexes of protein and hydroxyapatite (HAP) that display marked pleomorphism, appearing as round, laminated particles, spindles, and films. These same complexes can be found in normal untreated serum, albeit at much lower amounts, and appear to result from the progressive binding of serum proteins with apatite until reaching saturation, upon which the mineralo-protein complexes precipitate. Chemically and morphologically, these complexes are virtually identical to the so-called nanobacteria (NB) implicated in numerous diseases and considered unusual for their small size, pleomorphism, and the presence of HAP. Like NB, serum granulations can seed particles upon transfer to serum-free medium, and their main protein constituents include albumin, complement components 3 and 4A, fetuin-A, and apolipoproteins A1 and B100, as well as other calcium and apatite binding proteins found in the serum. However, these serum mineralo-protein complexes are formed from the direct chemical binding of inorganic and organic phases, bypassing the need for any biological processes, including the long cultivation in cell culture conditions deemed necessary for the demonstration of NB. Thus, these serum granulations may result from physiologically inherent processes that become amplified with calcium phosphate loading or when subjected to culturing in medium. They may be viewed as simple mineralo-protein complexes formed from the deployment of calcification-inhibitory pathways used by the body to cope with excess calcium phosphate so as to prevent unwarranted calcification. Rather than representing novel pathophysiological mechanisms or exotic lifeforms, these results indicate that the entities described earlier as NB most likely originate from calcium and apatite binding factors in the serum, presumably calcification inhibitors, that upon saturation, form seeds for HAP deposition and growth. These calcium granulations are similar to those found in organisms throughout nature and may represent the products of more general calcium regulation pathways involved in the control of calcium storage, retrieval, tissue deposition, and disposal

    In Vivo Ectopic Implantation Model to Assess Human Mesenchymal Progenitor Cell Potential

    Get PDF
    Clinical interest on human mesenchymal progenitor cells (hMPC) relies on their potential applicability in cell-based therapies. An in vitro characterization is usually performed in order to define MPC potency. However, in vitro predictions not always correlate with in vivo results and thus there is no consensus in how to really assess cell potency. Our goal was to provide an in vivo testing method to define cell behavior before therapeutic usage, especially for bone tissue engineering applications. In this context, we wondered whether bone marrow stromal cells (hBMSC) would proceed in an osteogenic microenvironment. Based on previous approaches, we developed a fibrin/ceramic/BMP-2/hBMSCs compound. We implanted the compound during only 2 weeks in NOD-SCID mice, either orthotopically to assess its osteoinductive property or subcutaneously to analyze its adequacy as a cell potency testing method. Using fluorescent cell labeling and immunohistochemistry techniques, we could ascertain cell differentiation to bone, bone marrow, cartilage, adipocyte and fibrous tissue. We observed differences in cell potential among different batches of hBMSCs, which did not strictly correlate with in vitro analyses. Our data indicate that the method we have developed is reliable, rapid and reproducible to define cell potency, and may be useful for testing cells destined to bone tissue engineering purposes. Additionally, results obtained with hMPCs from other sources indicate that our method is suitable for testing any potentially implantable mesenchymal cell. Finally, we propose that this model could successfully be employed for bone marrow niche and bone tumor studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12015-013-9464-1) contains supplementary material, which is available to authorized users
    corecore