500 research outputs found

    State-of-the-art survey of dissimilar metal joining by solid state welding

    Get PDF
    State-of-the-art of dissimilar metal joining by solid state diffusion bonding and roll and press welding, emphasizing stainless steel and aluminum allo

    Automated quantification and evaluation of motion artifact on coronary CT angiography images

    Get PDF
    Abstract Purpose This study developed and validated a Motion Artifact Quantification algorithm to automatically quantify the severity of motion artifacts on coronary computed tomography angiography (CCTA) images. The algorithm was then used to develop a Motion IQ Decision method to automatically identify whether a CCTA dataset is of sufficient diagnostic image quality or requires further correction. Method The developed Motion Artifact Quantification algorithm includes steps to identify the right coronary artery (RCA) regions of interest (ROIs), segment vessel and shading artifacts, and to calculate the motion artifact score (MAS) metric. The segmentation algorithms were verified against groundā€truth manual segmentations. The segmentation algorithms were also verified by comparing and analyzing the MAS calculated from groundā€truth segmentations and the algorithmā€generated segmentations. The Motion IQ Decision algorithm first identifies slices with unsatisfactory image quality using a MAS threshold. The algorithm then uses an artifactā€length threshold to determine whether the degraded vessel segment is large enough to cause the dataset to be nondiagnostic. An observer study on 30 clinical CCTA datasets was performed to obtain the groundā€truth decisions of whether the datasets were of sufficient image quality. A fiveā€fold crossā€validation was used to identify the thresholds and to evaluate the Motion IQ Decision algorithm. Results The automated segmentation algorithms in the Motion Artifact Quantification algorithm resulted in Dice coefficients of 0.84 for the segmented vessel regions and 0.75 for the segmented shading artifact regions. The MAS calculated using the automated algorithm was within 10% of the values obtained using groundā€truth segmentations. The MAS threshold and artifactā€length thresholds were determined by the ROC analysis to be 0.6 and 6.25 mm by all folds. The Motion IQ Decision algorithm demonstrated 100% sensitivity, 66.7% Ā± 27.9% specificity, and a total accuracy of 86.7% Ā± 12.5% for identifying datasets in which the RCA required correction. The Motion IQ Decision algorithm demonstrated 91.3% sensitivity, 71.4% specificity, and a total accuracy of 86.7% for identifying CCTA datasets that need correction for any of the three main vessels. Conclusion The Motion Artifact Quantification algorithm calculated accurate

    Estimating the Collapse Pressure of an Inflatable Aerodynamic Decelerator

    Get PDF
    The collapse pressure of an inflatable membrane is the minimum differential pressure which will sustain a specific desired shape under an applied load. In this paper, we present a method for estimating the collapse pressure of a tension-cone inflatable aerodynamic decelerator (IAD) that is subject to a static aerodynamic load. The IAD surface is modeled as an elastic membrane. For a given aerodynamic load and sufficiently high torus differential pressure, the IAD assumes a stable axisymmetric equilibrium shape. When the torus pressure is reduced sufficiently, the symmetric equilibrium state becomes unstable and we define this instance to be the critical pressure Pcr. In this paper, we will compare our predicted critical torus pressure with the corresponding observed torus collapse pressure (OTCP) for fifteen tests that were conducted by the third author and his collaborators at the NASA Glenn Research Center 10x10 Supersonic Wind Tunnel in April 2008. One of the difficulties with these types of comparisons is establishing the instance of torus collapse and determining the OTCP from quantities measured during the experiment. In many cases, torus collapse is gradual and the OTCP is not well-defined. However, in eight of the fifteen wind tunnel tests where the OTCP is well-defined, we find that the average of the relative differences (Pcr - OTCP/Pcr) was 8.9%. For completeness, we will also discuss the seven tests where the observed torus collapse pressure is not well-defined

    The Effect of Boundary Support and Reflector Dimensions on Inflatable Parabolic Antenna Performance

    Get PDF
    For parabolic antennas with sufficient surface accuracy, more power can be radiated with a larger aperture size. This paper explores the performance of antennas of various size and reflector depth. The particular focus is on a large inflatable elastic antenna reflector that is supported about its perimeter by a set of elastic tendons and is subjected to a constant hydrostatic pressure. The surface accuracy of the antenna is measured by an RMS calculation, while the reflector phase error component of the efficiency is determined by computing the power density at boresight. In the analysis, the calculation of antenna efficiency is not based on the Ruze Equation. Hence, no assumption regarding the distribution of the reflector surface distortions is presumed. The reflector surface is modeled as an isotropic elastic membrane using a linear stress-strain constitutive relation. Three types of antenna reflector construction are considered: one molded to an ideal parabolic form and two different flat panel design patterns. The flat panel surfaces are constructed by seaming together panels in a manner that the desired parabolic shape is approximately attained after pressurization. Numerical solutions of the model problem are calculated under a variety of conditions in order to estimate the accuracy and efficiency of these antenna systems. In the case of the flat panel constructions, several different cutting patterns are analyzed in order to determine an optimal cutting strategy

    An overview of semiconductor bridge, SCB, applications at Sandia National Laboratories

    Full text link

    The Nylon Scintillator Containment Vessels for the Borexino Solar Neutrino Experiment

    Get PDF
    Borexino is a solar neutrino experiment designed to observe the 0.86 MeV Be-7 neutrinos emitted in the pp cycle of the sun. Neutrinos will be detected by their elastic scattering on electrons in 100 tons of liquid scintillator. The neutrino event rate in the scintillator is expected to be low (~0.35 events per day per ton), and the signals will be at energies below 1.5 MeV, where background from natural radioactivity is prominent. Scintillation light produced by the recoil electrons is observed by an array of 2240 photomultiplier tubes. Because of the intrinsic radioactive contaminants in these PMTs, the liquid scintillator is shielded from them by a thick barrier of buffer fluid. A spherical vessel made of thin nylon film contains the scintillator, separating it from the surrounding buffer. The buffer region itself is divided into two concentric shells by a second nylon vessel in order to prevent inward diffusion of radon atoms. The radioactive background requirements for Borexino are challenging to meet, especially for the scintillator and these nylon vessels. Besides meeting requirements for low radioactivity, the nylon vessels must also satisfy requirements for mechanical, optical, and chemical properties. The present paper describes the research and development, construction, and installation of the nylon vessels for the Borexino experiment

    An anatomical investigation of rare upper limb neuropathies due to the Struthersā€™ ligament or arcade: a meta-analysis

    Get PDF
    Background: The Struthersā€™ ligament (SL) is a fibrous band that originates fromthe supracondylar humeral process and inserts into the medial humeral epicondyle, potentially compressing both the median nerve and brachial artery. The controversial Struthersā€™ arcade (SA) is a musculotendinous band found in the distal end of the arm that might compress the ulnar nerve. This study aimed to evaluate the pooled prevalence estimate of the SL and SA, and their anatomical features. Materials and methods: A meticulous search of major electronic medical databases was carried out regarding both structures. Applicable articles (and all relevant references) were analysed. Data from the eligible articles was extracted and evaluated. The quality and the potential risk of bias in the included studies were assessed using the AQUA tool. Results: The arcade was reported in 13 studies (510 arms), whereas the ligament in 6 studies (513 arms). The overall pooled prevalence estimate of the ligament was 1.8%, and 52.6% for the arcade. Most frequently, the ulnar nerve was covered by a tendinous arcade (42.2%). In all cases, the ligament inserted into the medial humeral epicondyle, but had various origins. Only 1 study reported compression of the median nerve by the ligament, whilst another contradicted this view. Conclusions: Although the SL is rare, and the SA is a valid anatomical entity (though with a variable presentation), clinically meaningful neurovascular entrapments caused by these structures are infrequent. Nonetheless, a better understanding of each may be beneficial for the best patient outcomes

    Generation and characterization of radiation in biomedical applications

    Get PDF
    This Creative Inquiry, Generation and Characterization of Radiation in Biomedical Applications, fuses two scientific disciplines, physics and bioengineering, seeking a common goal. Students under Dr. Takacs and Dr. Dean, including a doctoral candidate, are designing experiments to irradiate various biomaterials, including proteins and cancer cells, with monochromatic x-rays between 1000 eV to 15000 eV, and then study the results of those interactions. This specific creative inquiry\u27s (PHYS 2990-005 and BIOE 4510-025) goal for this semester is to further understand x-ray interactions with matter, specifically biomaterials. The bioengineering students are devising specific ways to cultivate certain proteins and cell cultures, and the physicists are designing parameters for the experiments, including the production and spectroscopy of x-rays. Several of the experiments will also be utilizing Clemson\u27s EBIT (electron beam ion trap, one of two in the country) as one of the sources for such radiation. With so little data collected using instrumentation of this precision, we feel that even our short-term goals will have far reaching implications
    • ā€¦
    corecore