992 research outputs found

    Localization versus subradiance in three-dimensional scattering of light

    Full text link
    We study the scattering modes of light in a three-dimensional disordered medium, in the scalar approximation and above the critical density for Anderson localization. Localized modes represent a minority of the total number of modes, even well above the threshold density, whereas spatially extended subradiant modes predominate. For specific energy ranges however, almost all modes are localized, yet adjusting accordingly the probe frequency does not allow to address these only in the regime accessible numerically. Finally, their lifetime is observed to be dominated by finite-size effects, and more specifically by the ratio of the localization length to their distance to the system boundaries.Comment: Add figure comparing localization percentage via frequency, fixed text, addition of Ioffe-Regel criterion limits, figure axis were normalize

    The Atomic Lighthouse Effect

    Get PDF
    We investigate the deflection of light by a cold atomic cloud when the light-matter interaction is locally tuned via the Zeeman effect using magnetic field gradients. This "lighthouse" effect is strongest in the single-scattering regime, where deviation of the incident field is largest. For optically dense samples, the deviation is reduced by collective effects, as the increase in linewidth leads to a decrease of the magnetic field efficiency

    Microscopic theory of photonic band gaps in optical lattices

    Get PDF
    We propose a microscopic model to describe the scattering of light by atoms in optical lattices. The model is shown to efficiently capture Bragg scattering, spontaneous emission and photonic band gaps. A connection to the transfer matrix formalism is established in the limit of a one-dimensional optical lattice, and we find the two theories to yield results in good agreement. The advantage of the microscopic model is, however, that it suits better for studies of finite-size and disorder effects.Comment: 5 pages, 6 figure

    Mirror-assisted coherent backscattering from the Mollow sidebands

    Get PDF
    In front of a mirror, the radiation of weakly driven large disordered clouds presents an interference fringe in the backward direction, on top of an incoherent background. Although strongly driven atoms usually present little coherent scattering, we here show that the mirror-assisted version can produce high contrast fringes, for arbitrarily high saturation parameters. The contrast of the fringes oscillates with the Rabi frequency of the atomic transition and the distance between the mirror and the atoms, due to the coherent interference between the carrier and the Mollow sidebands of the saturated resonant fluorescence spectrum emitted by the atoms. The setup thus represents a powerful platform to study the spectral properties of ensembles of correlated scatterers

    Reducing or enhancing chaos using periodic orbits

    Full text link
    A method to reduce or enhance chaos in Hamiltonian flows with two degrees of freedom is discussed. This method is based on finding a suitable perturbation of the system such that the stability of a set of periodic orbits changes (local bifurcations). Depending on the values of the residues, reflecting their linear stability properties, a set of invariant tori is destroyed or created in the neighborhood of the chosen periodic orbits. An application on a paradigmatic system, a forced pendulum, illustrates the method

    Stabilizing the intensity of a wave amplified by a beam of particles

    Full text link
    The intensity of an electromagnetic wave interacting self-consistently with a beam of charged particles as in a free electron laser, displays large oscillations due to an aggregate of particles, called the macro-particle. In this article, we propose a strategy to stabilize the intensity by re-shaping the macro-particle. This strategy involves the study of the linear stability (using the residue method) of selected periodic orbits of a mean-field model. As parameters of an additional perturbation are varied, bifurcations occur in the system which have drastic effect on the modification of the self-consistent dynamics, and in particular, of the macro-particle. We show how to obtain an appropriate tuning of the parameters which is able to strongly decrease the oscillations of the intensity without reducing its mean-value

    Synchronization of Bloch oscillations by a ring cavity

    Get PDF
    We consider Bloch oscillations of ultracold atoms stored in a one-dimensional vertical optical lattice and simultaneously interacting with a unidirectionally pumped optical ring cavity whose vertical arm is collinear with the optical lattice. We find that the feedback provided by the cavity field on the atomic motion synchronizes Bloch oscillations via a mode-locking mechanism, steering the atoms to the lowest Bloch band. It also stabilizes Bloch oscillations against noise, and even suppresses dephasing due to atom-atom interactions. Furthermore, it generates periodic bursts of light emitted into the counter-propagating cavity mode, providing a non-destructive monitor of the atomic dynamics. All these features may be crucial for future improvements of the design of atomic gravimeters based on recording Bloch oscillations.Comment: 14 pages, 7 figure

    Mode-locked Bloch oscillations in a ring cavity

    Get PDF
    We present a new technique for stabilizing and monitoring Bloch oscillations of ultracold atoms in an optical lattice under the action of a constant external force. In the proposed scheme, the atoms also interact with a unidirectionally pumped optical ring cavity whose one arm is collinear with the optical lattice. For weak collective coupling, Bloch oscillations dominate over the collective atomic recoil lasing instability and develop a synchronized regime in which the atoms periodically exchange momentum with the cavity field.Comment: 7 pages, 5 figure

    The sound of violets: the ethnographic potency of poetry?

    Get PDF
    This paper takes the form of a dialogue between the two authors, and is in two halves, the first half discursive and propositional, and the second half exemplifying the rhetorical, epistemological and metaphysical affordances of poetry in critically scrutinising the rhetoric, epistemology and metaphysics of educational management discourse. Phipps and Saunders explore, through ideas and poems, how poetry can interrupt and/or illuminate dominant values in education and in educational research methods, such as: ‱ alternatives to the military metaphors – targets, strategies and the like – that dominate the soundscape of education; ‱ the kinds and qualities of the cognitive and feeling spaces that might be opened up by the shifting of methodological boundaries; ‱ the considerable work done in ethnography on the use of the poetic: anthropologists have long used poetry as a medium for expressing their sense of empathic connection to their field and their subjects, particularly in considering the creativity and meaning-making that characterise all human societies in different ways; ‱ the particular rhetorical affordances of poetry, as a discipline, as a practice, as an art, as patterned breath; its capacity to shift phonemic, and therewith methodological, authority; its offering of redress to linear and reductive attempts at scripting social life, as always already given and without alternative

    Cooperative cooling in a one-dimensional chain of optically bound cold atoms

    Get PDF
    We discuss theoretically the optical binding of one-dimensional chains of cold atoms shone by a transversepump, where particles self-organize to a distance close to an optical wavelength. As the number of particlesis increased, the trapping potential increases logarithmically as the contributions from all atoms add upconstructively. We identify a cooperative cooling mechanism, due to the mutual exchange of photons betweenatoms, which can beat the spontaneous emission for chains that are long enough. Surprisingly, the cooling isoptimal very close to the resonance. This peculiar cooling mechanism thus gives new insights into the cooperativephysics of low-dimensional cold atom systems
    • 

    corecore