219 research outputs found

    A microlensing measurement of the size of the broad emission line region in the lensed QSO 2237+0305

    Full text link
    We present spatially resolved spectroscopic images of the gravitationally lensed QSO 2237+0305 taken with the GMOS Integral Field Unit (IFU) on the Gemini North telescope. These observations have the best spatial resolution of any IFU observations of this object to date and include the redshifted CIII] and MgII QSO broad lines. Unlike Mediavilla et al. 1998, we find no evidence for an arc of resolved broad line emission in either the CIII] or MgII lines. We calculate the image flux ratios of both the integrated emission lines and the surrounding continua. The flux ratios of the CIII] and MgII emission lines are consistent with each other but differ substantially from their corresponding continuum flux ratios and the radio/mid-IR flux ratios previously published. We argue that the broad emission line region must be microlensed and the CIII] and MgII emission regions must be approximately the same size and co-located along the line-of-sight. Assuming a simple model for the broad emission line region and the continuum region, we show the size of the CIII] / MgII broad line region is ~0.06 h_{70}^{1/2} pc and the continuum region is <= 0.02 h_{70}^{1/2} pc.Comment: 7 pages, 7 figures. Accepted for publication in MNRA

    A VLBA search for binary black holes in active galactic nuclei with double-peaked optical emission line spectra

    Full text link
    We have examined a subset of 11 active galactic nuclei (AGN) drawn from a sample of 87 objects that possess double-peaked optical emission line spectra, as put forward by Wang et al. (2009a) and are detectable in the FIRST survey at radio wavelengths. The double-peaked nature of the optical emission line spectra has been suggested as evidence for the existence of binary black holes in these AGN, although this interpretation is controversial. We make a simple suggestion, that direct evidence of binary black holes in these objects could be searched for in the form of dual sources of compact radio emission associated with the AGN. To explore this idea, we have used the Very Long Baseline Array to observe these 11 objects from the Wang et al. (2009a) sample. Of the 11 objects, we detect compact radio emission from two, SDSS J151709+335324 and SDSS J160024+264035. Both objects show single components of compact radio emission. The morphology of SDSS J151709+335324 is consistent with a recent comprehensive multi-wavelength study of this object by Rosario et al. (2010). Assuming that the entire sample consists of binary black holes, we would expect of order one double radio core to be detected, based on radio wavelength detection rates from FIRST and VLBI surveys. We have not detected any double cores, thus this work does not substantially support the idea that AGN with double-peaked optical emission lines contain binary black holes. However, the study of larger samples should be undertaken to provide a more secure statistical result, given the estimated detection rates.Comment: 14 pages, 3 figures. To appear in A

    Spectroscopy with the Engineering Development Array: cold H+^{+} at 63 MHz towards the Galactic Centre

    Full text link
    The Engineering Development Array (EDA) is a single test station for Square Kilometre Array (SKA) precursor technology. We have used the EDA to detect low-frequency radio recombination lines (RRLs) from the Galactic Centre region. Low-frequency RRLs are an area of interest for future low-frequency SKA work as these lines provide important information on the physical properties of the cold neutral medium. In this project we investigate the EDA, its bandpass and the radio frequency interference environment for low-frequency spectroscopy. We present line spectra from 30 to 325 MHz for the Galactic Centre region. The decrease in sensitivity for the EDA at the low end of the receiver prevents carbon and hydrogen RRLs to be detected below 40 and 60 MHz respectively. RFI strongly affects frequencies in the range 276-292, 234-270, 131-138, 95-102 and below 33 MHz. Cnα\alpha RRLs were detected in absorption for quantum levels n = 378 to 550 (39-121 MHz) and in emission for n = 272 to 306 (228-325 MHz). Cnβ\beta lines were detected in absorption for n = 387 to 696 (39-225 MHz). Hnα\alpha RRLs were detected in emission for n = 272 to 480 (59-325 MHz). Hnβ\beta lines were detected for n = 387 to 453 (141-225 MHz). The stacked Hnα\alpha detection at 63 MHz is the lowest frequency detection made for hydrogen RRLs and shows that a cold (partially) ionized medium exists along the line of sight to the Galactic Centre region. The size and velocity of this cold H+^{+} gas indicates that it is likely associated with the nearby Riegel-Crutcher cloud.Comment: 18 pages, 6 figures and 5 table

    Subtraction of Bright Point Sources from Synthesis Images of the Epoch of Reionization

    Full text link
    Bright point sources associated with extragalactic AGN and radio galaxies are an important foreground for low frequency radio experiments aimed at detecting the redshifted 21cm emission from neutral hydrogen during the epoch of reionization. The frequency dependence of the synthesized beam implies that the sidelobes of these sources will move across the field of view as a function of observing frequency, hence frustrating line-of-sight foreground subtraction techniques. We describe a method for subtracting these point sources from dirty maps produced by an instrument such as the MWA. This technique combines matched filters with an iterative centroiding scheme to locate and characterize point sources in the presence of a diffuse background. Simulations show that this technique can improve the dynamic range of EOR maps by 2-3 orders of magnitude.Comment: 11 pages, 8 figures, 1 table, submitted to PAS

    The emission and scintillation properties of RRAT J2325-0530 at 154 MHz and 1.4 GHz

    Full text link
    Rotating Radio Transients (RRATs) represent a relatively new class of pulsar, primarily characterised by their sporadic bursting emission of single pulses on time scales of minutes to hours. In addition to the difficulty involved in detecting these objects, low-frequency (<<300 MHz) observations of RRATs are sparse, which makes understanding their broadband emission properties in the context of the normal pulsar population problematic. Here, we present the simultaneous detection of RRAT J2325-0530 using the Murchison Widefield Array (154 MHz) and Parkes radio telescope (1.4 GHz). On a single-pulse basis, we produce the first polarimetric profile of this pulsar, measure the spectral index (α=2.2±0.1\alpha=-2.2\pm 0.1), pulse energy distributions, and present the pulse rates in the context of detections in previous epochs. We find that the distribution of time between subsequent pulses is consistent with a Poisson process and find no evidence of clustering over the \sim1.5 hr observations. Finally, we are able to quantify the scintillation properties of RRAT J2325-0530 at 1.4 GHz, where the single pulses are modulated substantially across the observing bandwidth, and show that this characterisation is feasible even with irregular time sampling as a consequence of the sporadic emission behaviour.Comment: 18 pages, 8 figures, 5 tables, accepted for publication in PAS

    A machine learning classifier for fast radio burst detection at the VLBA

    Get PDF
    Time domain radio astronomy observing campaigns frequently generate large volumes of data. Our goal is to develop automated methods that can identify events of interest buried within the larger data stream. The V-FASTR fast transient system was designed to detect rare fast radio bursts within data collected by the Very Long Baseline Array. The resulting event candidates constitute a significant burden in terms of subsequent human reviewing time. We have trained and deployed a machine learning classifier that marks each candidate detection as a pulse from a known pulsar, an artifact due to radio frequency interference, or a potential new discovery. The classifier maintains high reliability by restricting its predictions to those with at least 90% confidence. We have also implemented several efficiency and usability improvements to the V-FASTR web-based candidate review system. Overall, we found that time spent reviewing decreased and the fraction of interesting candidates increased. The classifier now classifies (and therefore filters) 80%–90% of the candidates, with an accuracy greater than 98%, leaving only the 10%–20% most promising candidates to be reviewed by humans

    Limits on fast radio bursts from four years of the V-FASTR experiment

    Get PDF
    The V-FASTR experiment on the Very Long Baseline Array was designed to detect dispersed pulses of milliseconds duration, such as fast radio bursts (FRBs). We use all V-FASTR data through February 2015 to report V-FASTR's upper limits on the rates of FRBs, and compare these with re-derived rates from Parkes FRB detection experiments. V-FASTR's operation at lambda=20 cm allows direct comparison with the 20 cm Parkes rate, and we derive a power-law limit of \gamma<-0.4 (95% confidence limit) on the index of FRB source counts, N(>S)\propto S^\gamma. Using the previously measured FRB rate and the unprecedented amount of survey time spent searching for FRBs at a large range of wavelengths (0.3 cm > \lambda > 90 cm), we also place frequency-dependent limits on the spectral distribution of FRBs. The most constraining frequencies place two-point spectral index limits of \alpha_{20cm}^{4cm} < 5.8 and \alpha_{90cm}^{20cm} > -7.6, where fluence F \propto f^\alpha if we assume true the burst rate reported by Champion et al. (2016) of R(F~0.6 Jy ms) = 7 x 10^3 sky^{-1} day^{-1} (for bursts of ~3 ms duration). This upper limit on \alpha suggests that if FRBs are extragalactic but non-cosmological, that on average they are not experiencing excessive free-free absorption due to a medium with high optical depth (assuming temperature ~8,000 K), which excessively invert their low-frequency spectrum. This in turn implies that the dispersion of FRBs arises in either or both of the intergalactic medium or the host galaxy, rather than from the source itself.Comment: Accepted for publication in Ap

    Analysing Astronomy Algorithms for GPUs and Beyond

    Full text link
    Astronomy depends on ever increasing computing power. Processor clock-rates have plateaued, and increased performance is now appearing in the form of additional processor cores on a single chip. This poses significant challenges to the astronomy software community. Graphics Processing Units (GPUs), now capable of general-purpose computation, exemplify both the difficult learning-curve and the significant speedups exhibited by massively-parallel hardware architectures. We present a generalised approach to tackling this paradigm shift, based on the analysis of algorithms. We describe a small collection of foundation algorithms relevant to astronomy and explain how they may be used to ease the transition to massively-parallel computing architectures. We demonstrate the effectiveness of our approach by applying it to four well-known astronomy problems: Hogbom CLEAN, inverse ray-shooting for gravitational lensing, pulsar dedispersion and volume rendering. Algorithms with well-defined memory access patterns and high arithmetic intensity stand to receive the greatest performance boost from massively-parallel architectures, while those that involve a significant amount of decision-making may struggle to take advantage of the available processing power.Comment: 10 pages, 3 figures, accepted for publication in MNRA
    corecore