1,450 research outputs found

    On the spectrum of facet crystallization waves at the smooth 4He crystal surface

    Get PDF
    The wavelike processes of crystallization and melting or crystallization waves are well known to exist at the 4He crystal surface in the rough state. Much less is known about crystallization waves for the 4He crystal surface in the smooth well-faceted state below the roughening transition temperature. To meet the lack, we analyze here the spectrum of facet crystallization waves and its dependence upon the wavelength, perturbation amplitude, and the number of possible facet steps distributed somehow over the wavelength. All the distinctive features of facet crystallization waves from conventional waves at the rough surface result from a nonanalytic cusplike behavior in the angle dependence for the surface tension of smooth crystal facets.Comment: 7 pages, 3 figures, 1 tabl

    Acoustic Probing of the Jamming Transition in an Unconsolidated Granular Medium

    Get PDF
    Experiments with acoustic waves guided along the mechanically free surface of an unconsolidated granular packed structure provide information on the elasticity of granular media at very low pressures that are naturally controlled by the gravitational acceleration and the depth beneath the surface. Comparison of the determined dispersion relations for guided surface acoustic modes with a theoretical model reveals the dependencies of the elastic moduli of the granular medium on pressure. The experiments confirm recent theoretical predictions that relaxation of the disordered granular packing through non-affine motion leads to a peculiar scaling of shear rigidity with pressure near the jamming transition corresponding to zero pressure. Unexpectedly, and in disagreement with the most of the available theories, the bulk modulus depends on pressure in a very similar way to the shear modulus

    Two-dimensional effective action for matter fields coupled to the dilaton

    Get PDF
    We revise the calculation of the one-loop effective action for scalar and spinor fields coupled to the dilaton in two dimensions. Applying the method of covariant perturbation theory for the heat kernel we derive the effective action in an explicitly covariant form that produces both the conformally invariant and the conformally anomalous terms.For scalar fields the conformally invariant part of the action is nonlocal. The obtained effective action is proved to be infrared finite. We also compute the one-loop effective action for scalar fields at finite temperature.Comment: LaTeX, 25 page

    Search for astro-gravity correlations

    Get PDF
    A new approach in the gravitational wave experiment is considered. In addition to the old method of searching for coincident reactions of two separated gravitational antennae it was proposed to seek perturbations of the gravitational detector noise background correlated with astrophysical events such as neutrino and gamma ray bursts which can be relaibly registered by correspondent sensors. A general algorithm for this approach is developed. Its efficiency is demonstrated in reanalysis of the old data concerning the phenomenon of neutrino-gravity correlation registered during of SN1987A explosion.Comment: 29 pages (LaTeX), 4 figures (EPS

    Structure and oxidation kinetics of the Si(100)-SiO2 interface

    Full text link
    We present first-principles calculations of the structural and electronic properties of Si(001)-SiO2 interfaces. We first arrive at reasonable structures for the c-Si/a-SiO2 interface via a Monte-Carlo simulated annealing applied to an empirical interatomic potential, and then relax these structures using first-principles calculations within the framework of density-functional theory. We find a transition region at the interface, having a thickness on the order of 20\AA, in which there is some oxygen deficiency and a corresponding presence of sub-oxide Si species (mostly Si^+2 and Si^+3). Distributions of bond lengths and bond angles, and the nature of the electronic states at the interface, are investigated and discussed. The behavior of atomic oxygen in a-SiO2 is also investigated. The peroxyl linkage configuration is found to be lower in energy than interstitial or threefold configurations. Based on these results, we suggest a possible mechanism for oxygen diffusion in a-SiO2 that may be relevant to the oxidation process.Comment: 7 pages, two-column style with 6 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#ng_sio

    Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores

    Get PDF
    Polygenic risk scores have shown great promise in predicting complex disease risk and will become more accurate as training sample sizes increase. The standard approach for calculating risk scores involves linkage disequilibrium (LD)-based marker pruning and applying a p value threshold to association statistics, but this discards information and can reduce predictive accuracy. We introduce LDpred, a method that infers the posterior mean effect size of each marker by using a prior on effect sizes and LD information from an external reference panel. Theory and simulations show that LDpred outperforms the approach of pruning followed by thresholding, particularly at large sample sizes. Accordingly, predicted R(2) increased from 20.1% to 25.3% in a large schizophrenia dataset and from 9.8% to 12.0% in a large multiple sclerosis dataset. A similar relative improvement in accuracy was observed for three additional large disease datasets and for non-European schizophrenia samples. The advantage of LDpred over existing methods will grow as sample sizes increase
    corecore