74,270 research outputs found

    Burst statistics in Alcator C-Mod SOL turbulence

    Full text link
    Bursty fluctuations in the scrape-off layer (SOL) of Alcator C-Mod have been analyzed using gas puff imaging data. This reveals many of the same fluctuation properties as Langmuir probe measurements, including normal distributed fluctuations in the near SOL region while the far SOL plasma is dominated by large amplitude bursts due to radial motion of blob-like structures. Conditional averaging reveals burst wave forms with a fast rise and slow decay and exponentially distributed waiting times. Based on this, a stochastic model of burst dynamics is constructed. The model predicts that fluctuation amplitudes should follow a Gamma distribution. This is shown to be a good description of the gas puff imaging data, validating this aspect of the model.Comment: 8 pages, 6 figure

    Bridge over troubled gas: clusters and associations under the SMC and LMC tidal stresses

    Full text link
    We obtained SOAR telescope B and V photometry of 14 star clusters and 2 associations in the Bridge tidal structure connecting the LMC and SMC. These objects are used to study the formation and evolution of star clusters and associations under tidal stresses from the Clouds. Typical star clusters in the Bridge are not richly populated and have in general relatively large diameters (~30-35 pc), being larger than Galactic counterparts of similar age. Ages and other fundamental parameters are determined with field-star decontaminated photometry. A self-consistent approach is used to derive parameters for the most-populated sample cluster NGC 796 and two young CMD templates built with the remaining Bridge clusters. We find that the clusters are not coeval in the Bridge. They range from approximately a few Myr (still related to optical HII regions and WISE and Spitzer dust emission measurements) to about 100-200 Myr. The derived distance moduli for the Bridge objects suggests that the Bridge is a structure connecting the LMC far-side in the East to the foreground of the SMC to the West. Most of the present clusters are part of the tidal dwarf candidate D 1, which is associated with an H I overdensity. We find further evidence that the studied part of the Bridge is evolving into a tidal dwarf galaxy, decoupling from the Bridge.Comment: 15 pages, 15 figures, MNRAS, Accepted 2015 July 2

    Intermittent fluctuations in the Alcator C-Mod scrape-off layer for ohmic and high confinement mode plasmas

    Full text link
    Plasma fluctuations in the scrape-off layer of the Alcator C-Mod tokamak in ohmic and high confinement modes have been analyzed using gas puff imaging data. In all cases investigated, the time series of emission from a single spatially-resolved view into the gas puff are dominated by large-amplitude bursts, attributed to blob-like filament structures moving radially outwards and poloidally. There is a remarkable similarity of the fluctuation statistics in ohmic plasmas and in edge localized mode-free and enhanced D-alpha high confinement mode plasmas. Conditionally averaged wave forms have a two-sided exponential shape with comparable temporal scales and asymmetry, while the burst amplitudes and the waiting times between them are exponentially distributed. The probability density functions and the frequency power spectral densities are self-similar for all these confinement modes. These results are strong evidence in support of a stochastic model describing the plasma fluctuations in the scrape-off layer as a super-position of uncorrelated exponential pulses. Predictions of this model are in excellent agreement with experimental measurements in both ohmic and high confinement mode plasmas. The stochastic model thus provides a valuable tool for predicting fluctuation-induced plasma-wall interactions in magnetically confined fusion plasmas.Comment: 17 pages, 10 figure

    Spatially resolved H_2 emission from a very low-mass star

    Full text link
    Molecular outflows from very low-mass stars (VLMSs) and brown dwarfs have been studied very little. So far, only a few CO outflows have been observed, allowing us to map the immediate circumstellar environment. We present the first spatially resolved H2 emission around IRS54 (YLW52), a ~0.1-0.2 Msun Class I source. By means of VLT SINFONI K-band observations, we probed the H2 emission down to the first ~50 AU from the source. The molecular emission shows a complex structure delineating a large outflow cavity and an asymmetric molecular jet. Thanks to the detection of several H2 transitions, we are able to estimate average values along the jet-like structure (from source position to knot D) of Av~28 mag, T~2000-3000 K, and H2 column density N(H2)~1.7x10^17 cm^-2. This allows us to estimate a mass loss rate of ~2x10^-10 Msun/yr for the warm H2 component . In addition, from the total flux of the Br Gamma line, we infer an accretion luminosity and mass accretion rate of 0.64 Lsun and ~3x10^-7 Msun/yr, respectively. The outflow structure is similar to those found in low-mass Class I and CTTS. However, the Lacc/Lbol ratio is very high (~80%), and the mass accretion rate is about one order of magnitude higher when compared to objects of roughly the same mass, pointing to the young nature of the investigated source.Comment: accepted as a Letter in A&
    • …
    corecore