4,305 research outputs found
Inter-site Coulomb interaction and Heisenberg exchange
Based on exact diagonalization results for small clusters we discuss the
effect of inter-site Coulomb repulsion in Mott-Hubbard or charge transfer
insulators. Whereas the exchange constant J for direct exchange is
substantially enhanced by inter-site Coulomb interaction, that for
superexchange is suppressed. The enhancement of J in the single-band models
holds up to the critical value for the charge density wave (CDW) instability,
thus opening the way for large values of J. Single-band Hubbard models with
sufficiently strong inter-site repulsion to be near a CDW instability thus may
provide `physical' realizations of t-J like models with the `unphysical'
parameter ratio J/t=1.Comment: Revtex file, 4 PRB pages, with 5 embedded ps-files. To appear in PRB,
rapid communications. Hardcopies of figures or the entire manuscript may also
be obtained by e-mail request to: [email protected]
Conformal Fixed Points of Unidentified Gauge Theories
In this article we discuss gauge/strings correspondence based on the
non-critical strings. With this goal we present several remarkable sigma models
with the AdS target spaces. The models have kappa symmetry and are completely
integrable. The radius of the AdS space is fixed and thus they describe
isolated fixed points of gauge theories in various dimensionsComment: 14 page
Direct observation of the glue pairing the halo of the nucleus 11Li
With the help of a unified description of the nuclear structure and of the
direct reaction mechanism we show that a recent 1H(11Li,9Li)3H experiment
provides, for the first time in nuclear physics, direct evidence of phonon
mediated pairing.Comment: 9 pages, 4 figures. Major change
Charged excitons in doped extended Hubbard model systems
We show that the charge transfer excitons in a Hubbard model system including
nearest neighbor Coulomb interactions effectively attain some charge in doped
systems and become visible in photoelectron and inverse photoelectron
spectroscopies. This shows that the description of a doped system by an
extended Hubbard model differs substantially from that of a simple Hubbard
model. Longer range Coulomb interactions cause satellites in the one electron
removal and addition spectra and the appearance of spectral weight if the gap
of doped systems at energies corresponding to the excitons of the undoped
systems. The spectral weight of the satellites is proportional to the doping
times the coordination number and therefore is strongly dependent on the
dimension.Comment: 10 pages revtex, 5 figures ps figures adde
Thermal detection of single e-h pairs in a biased silicon crystal detector
We demonstrate that individual electron-hole pairs are resolved in a 1 cm
by 4 mm thick silicon crystal (0.93 g) operated at 35 mK. One side of the
detector is patterned with two quasiparticle-trap-assisted
electro-thermal-feedback transition edge sensor (QET) arrays held near ground
potential. The other side contains a bias grid with 20\% coverage. Bias
potentials up to 160 V were used in the work reported here. A fiber optic
provides 650~nm (1.9 eV) photons that each produce an electron-hole () pair in the crystal near the grid. The energy of the drifting charges
is measured with a phonon sensor noise 0.09 pair.
The observed charge quantization is nearly identical for 's or 's
transported across the crystal.Comment: 4 journal pages, 5 figure
Measurement Of Quasiparticle Transport In Aluminum Films Using Tungsten Transition-Edge Sensors
We report new experimental studies to understand the physics of phonon
sensors which utilize quasiparticle diffusion in thin aluminum films into
tungsten transition-edge-sensors (TESs) operated at 35 mK. We show that basic
TES physics and a simple physical model of the overlap region between the W and
Al films in our devices enables us to accurately reproduce the experimentally
observed pulse shapes from x-rays absorbed in the Al films. We further estimate
quasiparticle loss in Al films using a simple diffusion equation approach.Comment: 5 pages, 6 figures, PRA
Strong-field approximation for Coulomb explosion of H_2^+ by short intense laser pulses
We present a simple quantum mechanical model to describe Coulomb explosion of
H by short, intense, infrared laser pulses. The model is based on the
length gauge version of the molecular strong-field approximation and is valid
for pulses shorter than 50 fs where the process of dissociation prior to
ionization is negligible. The results are compared with recent experimental
results for the proton energy spectrum [I. Ben-Itzhak et al., Phys. Rev. Lett.
95, 073002 (2005), B. D. Esry et al., Phys. Rev. Lett. 97, 013003 (2006)]. The
predictions of the model reproduce the profile of the spectrum although the
peak energy is slightly lower than the observations. For comparison, we also
present results obtained by two different tunneling models for this process.Comment: 8 pages, 4 figure
Superstring action in AdS_5 x S^5: kappa symmetry light cone gauge
As part of program to quantize superstrings in AdS_5 x S^5 background in
light cone approach we find the explicit form of the corresponding
Green-Schwarz action in fermionic light-cone kappa-symmetry gauge. The
resulting action is quadratic and quartic in fermions. In the flat space limit
it reduces to the standard light-cone Green-Schwarz action, and also has the
correct superparticle limit. We discuss fixing the bosonic light-cone gauge and
a reformulation of the action in terms of 2-d Dirac spinors.Comment: 32 pages, latex. v4: misprints corrected in Appendix A, to appear in
Phys Rev
Mixed-symmetry massless gauge fields in AdS(5)
Free AdS(5) mixed-symmetry massless bosonic and fermionic gauge fields of
arbitrary spins are described by using su(2,2) spinor language. Manifestly
covariant action functionals are constructed and field equations are derived.Comment: 13 pages; v2: title changed, typos corrected, minor changes,
reference added; v3: minor changes, published versio
- …